Search results
1 – 2 of 2Manlu Liu, Rui Lin, Maotao Yang, Anaid V. Nazarova and Jianwen Huo
The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To…
Abstract
Purpose
The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To improve the anti-interference performance of spherical robots in practical engineering, this paper proposes a spherical robot motion controller based on auto-disturbance rejection control (ADRC) with parameter tuning.
Design/methodology/approach
This paper considers the influences of the spherical shell, internal frame and pendulum on the movement of the spherical robot during the rotation to establish the multi-body dynamics model of the XK-I spherical robot. Due to the serious coupling problem of the dynamic model, the motion control state equation is constructed using linearization and decoupling. The XK-I spherical robot PSO-ADRC motion controller with parameter tuning function is designed by combining the state equation with the particle swarm optimization (PSO) algorithm. Finally, experiments are performed to evaluate the feasibility of PSO-ADRC in an actual case compared to ADRC, PSO-PID and PID.
Findings
By analyzing the required time to reach the expected value, the control stability and the fluctuation range of the standard deviation after reaching the expected value, the superiority of PSO-ADRC to ADRC, PSO-PID and PID is demonstrated in terms of the speed and anti-interference ability.
Practical implications
The proposed method can be applied to the robot control field.
Originality/value
A parameter-tuning method for auto-disturbance-rejection motion control of the spherical robot is proposed. According to the experimental results, the anti-interference ability of the spherical robot moving on uneven ground is improved. Therefore, it provides a foundation for the autonomous environmental monitoring of the spherical robot equipped with sensors.
Details
Keywords
Jianwen Huo, Stanislav Leonidovich Zenkevich, Anaid Vartanovna Nazarova and Meixin Zhai
Unmanned aerial/ground vehicles (UAV/UGV) collaboration systems are increasingly being used to perform reconnaissance and rescue missions autonomously, especially in disaster…
Abstract
Purpose
Unmanned aerial/ground vehicles (UAV/UGV) collaboration systems are increasingly being used to perform reconnaissance and rescue missions autonomously, especially in disaster areas. The paper aims to discuss this issue.
Design/methodology/approach
To improve visibility, this study proposes a path-planning algorithm based on map matching. Continuous ground images are first collected aerially using the UAV vision system. Subsequently, a global map of the ground environment is created by processing the collected images using the methods of image correction, image mosaic and obstacle recognition. The local map of the ground environment is obtained using the 2D laser radar sensor of the UGV. A set of features for both global and local maps is established. Unknown values during map matching are determined via the least squares method. Based on the matched mapping, the traditional A* algorithm is used for the planning of global path in the global map, and the dynamic window method is used for adjustment of the local map.
Findings
Simulation experiments were carried out to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm can construct a global map of the wide environment and effectively bypass the obstacles missed by the UAV.
Research limitations/implications
Prior to map matching, there is a need to extract the edge of obstacles in the global map.
Originality/value
This paper proposed a path planning algorithm based on map matching, yielding insights into the application of the UAV/UGV collaboration systems in disaster areas.
Details