Search results

1 – 4 of 4
Article
Publication date: 23 August 2024

Amirreza Rashidi, Hadi Sarvari, Daniel W.M. Chan, Timothy O. Olawumi and David J. Edwards

This study provides a comprehensive analysis of the transition from Building Information Modelling (BIM) to digital twins (DT) in the construction industry. Specifically, the…

Abstract

Purpose

This study provides a comprehensive analysis of the transition from Building Information Modelling (BIM) to digital twins (DT) in the construction industry. Specifically, the research explores the current state (themes and trends) and future directions of this emerging research domain.

Design/methodology/approach

A multi-stage approach was employed that combines scientometric and systematic review approaches. The scientometric analysis involves quantitative assessment of scientific publications retrieved from the Web of Science database – using software tools like VOSviewer and HistCite. The systematic review involved a rigorous synthesis and evaluation of the existing literature to identify research gaps, themes, clusters and future directions. Clusters obtained from the scientometric analysis of the co-occurrence network were then used as a subject base for a systematic study.

Findings

Emergent findings reveal a rapidly growing interest in BIM-DT integration, with over 90% of publications since 2020. The United Kingdom, China and Italy are the leading contributing countries. Five prominent research clusters identified are: (1) Construction 4.0 technologies; (2) smart cities and urban environments; (3) heritage BIM and laser scanning; (4) asset and facility management; and (5) energy and sustainability. The study highlights the potential of BIM-DT integration for enhancing project delivery, asset management and sustainability practices in the built environment. Moreover, the project’s life cycle operation phase has garnered the most attention from researchers in this field compared to other phases.

Originality/value

This unique study is comprehensive in its approach by combining scientometric and systematic methods to provide a quantitative and qualitative evaluation of the BIM-DT research landscape. Unlike previous reviews that focused solely on facility management, this study’s scope covers the entire construction sector. By identifying research gaps, challenges and future directions, this study establishes a solid foundation for researchers exploring this emerging field and envisions the future landscape of BIM-DT integration in the built environment.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 January 2025

Hoda Alsadat Vaghefi-Rezaee, Setareh Khademi-Adel, Hadi Sarvari, David J. Edwards and Amirreza Rashidi

Given the expansion of cities and urbanization, developing efficient and reliable transportation infrastructure, especially urban tunnels, is essential. Failure to maintain such…

Abstract

Purpose

Given the expansion of cities and urbanization, developing efficient and reliable transportation infrastructure, especially urban tunnels, is essential. Failure to maintain such complex construction facilities with intelligent equipment systems could result in human losses and impose huge costs on governments. Therefore, it is necessary to have practical maintenance plans and operational safety monitoring for urban tunnels, which leads to their long lifespan, increases users’ safety and reduces operation risks.

Design/methodology/approach

Hence, this research aims to evaluate the maintenance risks of urban tunnel lighting systems (UTLS) using a hybrid risk-based maintenance (RBM) approach. In this vein, three rounds of a fuzzy Delphi survey were conducted to consolidate the specific operation criteria and maintenance risk factors to the circumstances of Iran and UTLS. Furthermore, the fuzzy DEMATEL method was applied to determine the cause-and-effect relationships among the identified critical operation criteria. The identified risks associated with maintenance in UTLS were then analyzed and ranked using a combination of fuzzy ANP-VIKOR techniques.

Findings

The ranking of the various risks revealed that the “poor performance of switchboards in power supply due to faults in switchboard equipment” risk was ranked first, followed by the “poor performance of panels in the power supply due to unfavorable environmental conditions,” “The poor performance of panels in the power supply due to problems with switches (key failure)” and “The poor performance of panels in power supply due to burning fuses due to unauthorized current” risks. The findings of this study indicate that this hybrid maintenance method, developed as a risk-based network, provides reliability for maintaining urban tunnel lighting systems (UTLS).

Originality/value

It is anticipated that the findings of this research will considerably contribute to improving UTLS maintenance management while enhancing different stakeholders’ understanding of the most critical risks in maintenance, particularly toward the UTLS in Iran. An RBM management program can result in preparing and formulating policies, comprehensive guidelines or regulations for the maintenance of urban tunnels that are recommended for future research.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 29 May 2020

Kh. Hosseinzadeh, So Roghani, A. Asadi, Amirreza Mogharrebi and D.D. Ganji

The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include…

Abstract

Purpose

The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include water, ethylene glycol and ethylene glycol/water (50%–50%). Also, a nanoparticle was used in all of the base fluids. The effects of natural convection heat transfer and magnetic field have been taken into account.

Design/methodology/approach

The main purpose of solving the governing equations is to scrutinize the effects of the magnetic parameter, the nanoparticle volume fraction, micropolar parameter and nanoparticles shape factor on velocity, temperature and microrotation profiles, the skin friction coefficient and the Nusselt number. These surveys have been considered for three base fluids simultaneously.

Findings

The results indicate that for water-based fluids, the temperature profile of lamina-shaped nanoparticles is 38.09% higher than brick-shaped nanoparticles.

Originality/value

This paper provides micropolar MHD fluid flow analysis considering natural convection heat transfer and magnetic field in three different base fluids. The aim of assessments is the diagnosis of some parameter effects, such as magnetic parameter and nanoparticle volume fraction, on velocity, temperature and microrotation profiles and components. Also, the use of mixed base fluids presented as a novelty in this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 4 of 4