Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 10 November 2023

Malika Neifar, Amira Ghorbel and Kawthar Bouaziz

This study attempts to come in help for Morocco by investigating rigorously the linkage between environmental degradation, measured by ecological footprint (EF), and the gross…

103

Abstract

Purpose

This study attempts to come in help for Morocco by investigating rigorously the linkage between environmental degradation, measured by ecological footprint (EF), and the gross domestic product growth (EG), the human capital (HC) index and the natural resources (NR) depletion over the period of 1980:Q1 to 2021:Q1. The paper examines the validity of environmental Kuznets curve (EKC) hypothesis in the Moroccan context.

Design/methodology/approach

Unlike previous studies, which are based only on the autoregressif dynamic linear (ARDL) model, this paper investigates two recent models: the novel DYNARDL simulation approach and the Kernel-based regularized least squares (KRLS) technics and uses in addition the frequency domain causality (FDC) test.

Findings

Models output say a significant and negative association between HC and the EF and a significant and positive interplay between economic growth and environmental quality in the long term. In the short term, findings reveal a significant and negative association between NR and the EF. Based on the FDC test, results conclude about a unidirectional causality from NR to the EF in short-, medium-, and long-term. Moreover, results validate the EKC hypothesis for the Moroccan environment sustainability.

Originality/value

In this study, the researchers use the “ecological footprint” as dependent variable to obtain more accurate and comprehensive assessment of environmental deterioration. Based on time series data investigations, this study is the first paper, which validates the EKC hypothesis and develops important policy implications for Morocco context to achieve sustainable development targets.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Access Restricted. View access options
Article
Publication date: 2 September 2019

Guellil Imane, Darwish Kareem and Azouaou Faical

This paper aims to propose an approach to automatically annotate a large corpus in Arabic dialect. This corpus is used in order to analyse sentiments of Arabic users on social…

129

Abstract

Purpose

This paper aims to propose an approach to automatically annotate a large corpus in Arabic dialect. This corpus is used in order to analyse sentiments of Arabic users on social medias. It focuses on the Algerian dialect, which is a sub-dialect of Maghrebi Arabic. Although Algerian is spoken by roughly 40 million speakers, few studies address the automated processing in general and the sentiment analysis in specific for Algerian.

Design/methodology/approach

The approach is based on the construction and use of a sentiment lexicon to automatically annotate a large corpus of Algerian text that is extracted from Facebook. Using this approach allow to significantly increase the size of the training corpus without calling the manual annotation. The annotated corpus is then vectorized using document embedding (doc2vec), which is an extension of word embeddings (word2vec). For sentiments classification, the authors used different classifiers such as support vector machines (SVM), Naive Bayes (NB) and logistic regression (LR).

Findings

The results suggest that NB and SVM classifiers generally led to the best results and MLP generally had the worst results. Further, the threshold that the authors use in selecting messages for the training set had a noticeable impact on recall and precision, with a threshold of 0.6 producing the best results. Using PV-DBOW led to slightly higher results than using PV-DM. Combining PV-DBOW and PV-DM representations led to slightly lower results than using PV-DBOW alone. The best results were obtained by the NB classifier with F1 up to 86.9 per cent.

Originality/value

The principal originality of this paper is to determine the right parameters for automatically annotating an Algerian dialect corpus. This annotation is based on a sentiment lexicon that was also constructed automatically.

Details

International Journal of Web Information Systems, vol. 15 no. 5
Type: Research Article
ISSN: 1744-0084

Keywords

Access Restricted. View access options
Article
Publication date: 22 March 2024

Amira Said and Chokri Ouerfelli

This paper aims to examine the dynamic conditional correlation (DCC) and hedging ratios between Dow Jones markets and oil, gold and bitcoin. Using daily data, including the…

155

Abstract

Purpose

This paper aims to examine the dynamic conditional correlation (DCC) and hedging ratios between Dow Jones markets and oil, gold and bitcoin. Using daily data, including the COVID-19 pandemic and the Russia–Ukraine war. We employ the DCC-generalized autoregressive conditional heteroskedasticity (GARCH) and asymmetric DCC (ADCC)-GARCH models.

Design/methodology/approach

DCC-GARCH and ADCC-GARCH models.

Findings

The most of DCCs among market pairs are positive during COVID-19 period, implying the existence of volatility spillovers (Contagion-effects). This implies the lack of additional economic gains of diversification. So, COVID-19 represents a systematic risk that resists diversification. However, during the Russia–Ukraine war the DCCs are negative for most pairs that include Oil and Gold, implying investors may benefit from portfolio-diversification. Our hedging analysis carries significant implications for investors seeking higher returns while hedging their Dow Jones portfolios: keeping their portfolios unhedged is better than hedging them. This is because Islamic stocks have the ability to mitigate risks.

Originality/value

Our paper may make a valuable contribution to the existing literature by examining the hedging of financial assets, including both conventional and Islamic assets, during periods of stability and crisis, such as the COVID-19 pandemic and the Russia–Ukraine war.

Details

The Journal of Risk Finance, vol. 25 no. 3
Type: Research Article
ISSN: 1526-5943

Keywords

1 – 3 of 3
Per page
102050