Search results

1 – 3 of 3
Article
Publication date: 3 October 2019

Kasra Ayoubi Ayoubloo, Mohammad Ghalambaz, Taher Armaghani, Aminreza Noghrehabadi and Ali J. Chamkha

This paper aims to theoritically investigate the free convection flow and heat transfer of a non-Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity…

Abstract

Purpose

This paper aims to theoritically investigate the free convection flow and heat transfer of a non-Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity partially filled with a layer of a porous medium.

Design/methodology/approach

The non-Newtonian behavior of the pseudoplastic liquid is described by using a power-law non-Newtonian model. There is a temperature difference between the internal and external cylinders. The porous layer is attached to the internal cylinder and has a thickness of D. Upper and lower walls of the cavity are well insulated. The governing equations are transformed into a non-dimensional form to generalize the solution. The finite element method is used to solve the governing equations numerically. The results are compared with the literature results in several cases and found in good agreement.

Findings

The influence of the thickness of the porous layer, Rayleigh number and non-Newtonian index on the heat transfer behavior of a non-Newtonian pseudoplastic fluid is addressed. The increase of pseudoplastic behavior and increase of the thickness of the porous layer enhances the heat transfer. By increase of the porous layer from 0.6 to 0.8, the average Nusselt number increased from 0.15 to 0.25. The increase of non-Newtonian effects (decrease of the non-Newtonian power-law index) enhances the heat transfer rate.

Originality/value

The free convection behavior of a pseudoplastic-non-Newtonian fluid in a cylindrical enclosure partially filled by a layer of a porous medium is addressed for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2019

Amin Samimi Behbahan, Aminreza Noghrehabadi, C.P. Wong, Ioan Pop and Morteza Behbahani-Nejad

The purpose of this paper is to study thermal performance of metal foam/phase change materials composite under the influence of the enclosure aspect ratios (ratio of enclosure…

Abstract

Purpose

The purpose of this paper is to study thermal performance of metal foam/phase change materials composite under the influence of the enclosure aspect ratios (ratio of enclosure height: length). In this study, a compound metal foam/phase change material (PCM), which has been proved to be one of the most promising approaches for thermal conductivity promotion on PCMs, was used.

Design/methodology/approach

The PCM is considered initially at its melting temperature. The enclosure for all the cases has a constant volume with various aspect ratios. The left side of the enclosure is suddenly exposed to a thermal source having a constant heat flux, while the other three surfaces are kept thermally insulated. A two-dimensional numerical model considering the non-equilibrium thermal factor, non-Darcy effect and local natural convection was proposed. The coupling between velocity and pressure is solved using the SIMPLEC, and the Rhie and Chow interpolation is used to avoid the checker-board solutions for the pressure.

Findings

The effects of foam porosity and aspect ratio of the enclosure on the PCM’s melting time were investigated. The results indicated that enclosure aspect ratio plays a fundamental role in phase change of copper foam/PCM composites. For higher porosities, enclosures with bigger aspect ratios proved to led to optimal melting time. Besides, the best enclosure aspect ratio and foam porosity for a fixed-volume enclosure to have the shortest melting time are 2.1 and 91.66 per cent, respectively. However, for a specific amount of PCM inside a variable volume enclosure, the optimal melting time was for foam with ε = 95 per cent. The achieved results prove the great importance of selection of aspect ratio to benefit both conduction and convection heat transfer simultaneously.

Originality/value

The area of energy storage systems is original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Aminreza Noghrehabadi, Amin Samimi Behbahan and I. Pop

– The purpose of this paper is to study natural convection heat transfer and fluid flow in a square cavity filled with CuO-water nanofluid.

Abstract

Purpose

The purpose of this paper is to study natural convection heat transfer and fluid flow in a square cavity filled with CuO-water nanofluid.

Design/methodology/approach

The entire length of the bottom wall of the cavity is covered by two pairs of heat source-sink, whereas the other walls are insulated. The governing equations of fluid flow are discretized using a finite volume method with a collocated grid arrangement. The coupling between velocity and pressure is solved using the SIMPLEC and the Rhie and Chow interpolation is used to avoid the checker-board solutions for the pressure.

Findings

The numerical results are reported for the effect of Rayleigh number, solid volume fraction and both presence and absence of thermophoresis and Brownian motion effects. The numerical results show an improvement in heat transfer rate for the whole range of Rayleigh numbers when Brownian and thermophoresis effects are considered. Furthermore, an increase in the Rayleigh number and nanoparticle volume fraction in both cases – when Brownian and thermophoresis effects are neglected or considered – has an excellent influence on heat transfer of nanofluids.

Originality/value

The area of nanofluids is very original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3