Search results

1 – 6 of 6
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 March 2019

Pietro Lanzillotti, Julien Gardan, Ali Makke and Naman Recho

The purpose of this paper is the application and the improvement of a previous method based on an acrylonitrile butadiene styrene thread deposition in fused deposition modeling…

384

Abstract

Purpose

The purpose of this paper is the application and the improvement of a previous method based on an acrylonitrile butadiene styrene thread deposition in fused deposition modeling. To gain up to 20 per cent of mechanical strength in comparison with a classical deposition, this method suggests a smart threads deposition in the principal stresses direction.

Design/methodology/approach

In this work, the authors use single edge notched bend specimens with mixed mode I+II loading cases to study the influence of the thread deposition on the fracture toughness of the specimens. For this purpose, finite elements simulations have been used to evaluate the fracture toughness of the specimens through the calculation of the J integral. The study presents a method to compare the optimized and classical specimens and also to gather data and suggest a numerical model for this optimized deposition. For this reason, tensile tests are carried out to characterize the mechanical behavior of the printed samples with respect to the raster angle. Extra attention has been paid to 45 per cent samples behavior that shows a pronounced plasticity before the fracture. This interprets partially the improvement in the fracture behavior of the single edge notched bend samples.

Findings

The results show an enhancement through this optimization which leads to an increase of the maximal force in fracture up to 20 per cent and the fracture toughness of the specimens with stress intensity factors KI and KII increases about 30 per cent.

Originality/value

Additive manufacturing is increasingly gaining importance not only in prototyping but also in industrial production. For this reason, the characterization and the optimization of these technologies and their materials are fundamental. An adaptive deposition through a smart material based on specific mechanical behaviors would be an advance.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 2 February 2021

Ali Alperen Bakır, Resul Atik and Sezer Özerinç

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used…

1229

Abstract

Purpose

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used technique for the manufacturing of thermoplastic parts. The mechanical performance of these parts under service conditions is difficult to predict due to the large number of process parameters involved. The review summarizes the current knowledge about the process-property relationships for FDM-based three-dimensional printing.

Design/methodology/approach

The review first discusses the effect of material selection, including pure thermoplastics and polymer-matrix composites. Second, process parameters such as nozzle temperature, raster orientation and infill ratio are discussed. Mechanisms that these parameters affect the specimen morphology are explained, and the effect of each parameter on the strength of printed parts are systematically presented.

Findings

Mechanical properties of FDM-produced parts strongly depend on process parameters and are usually lower than injection-molded counterparts. There is a need to understand the effect of each parameter and any synergistic effects involved better.

Practical implications

Through the optimization of process parameters, FDM has the potential to produce parts with strength values matching those produced by conventional methods. Further work in the field will make the FDM process more suitable for the manufacturing of load-bearing components.

Originality/value

This paper presents a critical assessment of the current knowledge about the mechanical properties of FDM-produced parts and suggests future research directions.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Available. Open Access. Open Access
Article
Publication date: 9 January 2025

Satabdee Dash, Axel Nordin and Glenn Johansson

Dual design for additive manufacturing (DfAM) takes into account both the opportunities and constraints of AM simultaneously, which research shows is more effective than…

157

Abstract

Purpose

Dual design for additive manufacturing (DfAM) takes into account both the opportunities and constraints of AM simultaneously, which research shows is more effective than considering them separately. Unlike existing reviews, this paper aims to map DfAM research within the engineering design process, focusing solely on studies adopting dual DfAM. Additionally, it aims to suggest future research directions by analysing prominent research themes and their inter-relationships. Special emphasis is on theme inter-relationships concerning the conceptual, embodiment and detail design phases.

Design/methodology/approach

The study is based on a systematic literature review of 148 publications from January 2000 to February 2024. After screening, prominent research themes were identified and systematically analysed. Theme inter-relationships were explored using quantitative analysis and chord diagrams.

Findings

The findings reveal that studies either span the entire design process, the early design phases or the later design phases. Most research focuses on the later design phases, particularly within themes of design optimisation, design evaluation and AM-specific manufacturing constraints. The most frequent theme inter-relationship occurs between design optimisation and AM-specific manufacturing constraints. Overall, the findings suggest future research directions to advance dual DfAM research, such as development of design rules and guidelines for cellular structures.

Originality/value

This review proposes a model by mapping prominent themes of dual DfAM research in relation to the engineering design process. Another original contribution lies in analysing theme inter-relationships and visualising them using chord diagrams – a novel approach that did not exist before.

Details

Rapid Prototyping Journal, vol. 31 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 27 August 2024

Luis Lisandro Lopez Taborda, Heriberto Maury and Ivan E. Esparragoza

Additive manufacturing (AM) is growing economically because of its cost-effective design flexibility. However, it faces challenges such as interlaminar weaknesses and reduced…

39

Abstract

Purpose

Additive manufacturing (AM) is growing economically because of its cost-effective design flexibility. However, it faces challenges such as interlaminar weaknesses and reduced strength because of product anisotropy. Therefore, the purpose of this study is to develop a methodology that integrates design for additive manufacturing (AM) principles with fused filament fabrication (FFF) to address these challenges, thereby enhancing product reliability and strength.

Design/methodology/approach

Developed through case analysis and literature review, this methodology focuses on design methodology for AM (DFAM) principles applied to FFF for high mechanical performance applications. A DFAM database is constructed to identify common requirements and establish design rules, validated through a case study.

Findings

Existing DFAM approaches often lack failure theory integration, especially in FFF, emphasizing mechanical characterizations over predictive failure analysis in functional parts. This methodology addresses this gap by enhancing product reliability through failure prediction in high-performance FFF applications.

Originality/value

While some DFAM methods exist for high-performance FFF, they are often specific cases. Existing DFAM methodologies typically apply broadly across AM processes without a specific focus on failure theories in functional parts. This methodology integrates FFF with a failure theory approach to strengthen product reliability in high-performance applications.

Access Restricted. View access options
Article
Publication date: 21 January 2022

Edward C.S. Ku, Jiunn-Woei Lian and Ling-Ling Liu

The purpose of this study is to integrate wayfinding strategies and open innovation to examine the factors of mobile application (M-App) design.

171

Abstract

Purpose

The purpose of this study is to integrate wayfinding strategies and open innovation to examine the factors of mobile application (M-App) design.

Design/methodology/approach

The study formulated an M-App model from the wayfinding sense-making and open innovation perspective. Samples were collected from the M-Apps users of Airbnb.com in a survey based on the principle of snowball sampling, and 416 samples were returned in total. The hypothesis testing of the model was conducted using structural equation modeling with Linear Structural Relations.

Findings

The operators of the lodging industry should design the recommended route on the M-Apps for tourists to reach the accommodation on the map function conveniently.

Practical implications

The orientation of wayfinding sense-making integrates the accommodation host to mark the direction of the accommodation on the map function of M-Apps to indicate the direction of the location.

Social implications

The operators of the lodging industry should design the recommended route on the M-Apps for tourists to conveniently reach the accommodation on the map function.

Originality/value

For the M-Apps designer of the lodging industry, devising the function with an arrow point on the map would enable tourists to check their current location handily. Moreover, the M-Apps of lodging businesses can reduce marketing expenses from the high recommendations of tourists.

Details

International Journal of Tourism Cities, vol. 8 no. 3
Type: Research Article
ISSN: 2056-5607

Keywords

Access Restricted. View access options
Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

4236

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 6 of 6
Per page
102050