Gholamreza Heravi, Amir Hosein Taherkhani, Soroush Sobhkhiz, Ali Hassandokht Mashhadi and Rouzbeh Zahiri-Hashemi
This study provides an integrated risk-based cost and time estimation approach for deep excavation projects. The purpose is to identify the best practices in recent advances of…
Abstract
Purpose
This study provides an integrated risk-based cost and time estimation approach for deep excavation projects. The purpose is to identify the best practices in recent advances of excavation risk analysis (RA) and integrate them with traditional cost and time estimation methods.
Design/methodology/approach
The implemented best practices in this research are as follows: (1) fault-tree analysis (FTA) for risk identification (RI); (2) Bayesian belief networks (BBNs), fuzzy comprehensive analysis and Monte Carlo simulation (MCS) for risk analysis; and (3) sensitivity analysis and root-cause analysis (RCA) for risk response planning (RRP). The proposed approach is applied in an actual deep excavation project in Tehran, Iran.
Findings
The results show that the framework proposes a practical approach for integrating the risk management (RM) best practices in the domain of excavation projects with traditional cost and time estimation approaches. The proposed approach can consider the interrelationships between risk events and identify their root causes. Further, the approach engages different stakeholders in the process of RM, which is beneficial for determining risk owners and responsibilities.
Originality/value
This research contributes to the project management body of knowledge by integrating recent RM best practices in deep excavation projects for probabilistic estimation of project time and cost.