Hongbin Mu, Wei Wei, Alexandrina Untaroiu and Qingdong Yan
Traditional three-dimensional numerical methods require a long time for transient computational fluid dynamics simulation on oil-filling process of hydrodynamic braking. The…
Abstract
Purpose
Traditional three-dimensional numerical methods require a long time for transient computational fluid dynamics simulation on oil-filling process of hydrodynamic braking. The purpose of this paper is to investigate reconstruction and prediction methods for the pressure field on blade surfaces to explore an accurate and rapid numerical method to solve transient internal flow in a hydrodynamic retarder.
Design/methodology/approach
Dynamic braking performance for the oil-filling process was simulated and validated using experimental results. With the proper orthogonal decomposition (POD) method, the dominant modes of transient pressure distribution on blades were extracted using their spatio-temporal structural features from the knowledge of computed flow data. Pressure field on blades was reconstructed. Based on the approximate model (AM), transient pressure field on blades was predicted in combination with POD. The causes of reconstruction and prediction error were, respectively, analyzed.
Findings
Results show that reconstruction with only a few dominant POD modes could represent all flow samples with high accuracy. POD method demonstrates an efficient simplification for accurate prediction of the instantaneous variation of pressure field in a hydrodynamic retarder, especially at the stage of high oil-filling rate.
Originality/value
The paper presents a novel numerical method, which combines POD and AM approaches for rapid and accurate prediction of braking characteristics during the oil-filling period, based on the knowledge of computed flow data.