Priya Mishra and Aleena Swetapadma
Sleep arousal detection is an important factor to monitor the sleep disorder.
Abstract
Purpose
Sleep arousal detection is an important factor to monitor the sleep disorder.
Design/methodology/approach
Thus, a unique nth layer one-dimensional (1D) convolutional neural network-based U-Net model for automatic sleep arousal identification has been proposed.
Findings
The proposed method has achieved area under the precision–recall curve performance score of 0.498 and area under the receiver operating characteristics performance score of 0.946.
Originality/value
No other researchers have suggested U-Net-based detection of sleep arousal.
Research limitations/implications
From the experimental results, it has been found that U-Net performs better accuracy as compared to the state-of-the-art methods.
Practical implications
Sleep arousal detection is an important factor to monitor the sleep disorder. Objective of the work is to detect the sleep arousal using different physiological channels of human body.
Social implications
It will help in improving mental health by monitoring a person's sleep.
Details
Keywords
Aleena Swetapadma, Tishya Manna and Maryam Samami
A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the…
Abstract
Purpose
A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the atrial blood pressure, photoplethysmogram (PLETH), electrocardiogram (ECG) and respiratory (RESP) signals are considered as input signals.
Design/methodology/approach
Three machine learning approaches feed-forward artificial neural network (ANN), ensemble learning method and k-nearest neighbors searching methods are used to detect the false alarm. The proposed method has been implemented using Arduino and MATLAB/SIMULINK for real-time ICU-arrhythmia patients' monitoring data.
Findings
The proposed method detects the false alarm with an accuracy of 99.4 per cent during asystole, 100 per cent during ventricular flutter, 98.5 per cent during ventricular tachycardia, 99.6 per cent during bradycardia and 100 per cent during tachycardia. The proposed framework is adaptive in many scenarios, easy to implement, computationally friendly and highly accurate and robust with overfitting issue.
Originality/value
As ECG signals consisting with PQRST wave, any deviation from the normal pattern may signify some alarming conditions. These deviations can be utilized as input to classifiers for the detection of false alarms; hence, there is no need for other feature extraction techniques. Feed-forward ANN with the Lavenberg–Marquardt algorithm has shown higher rate of convergence than other neural network algorithms which helps provide better accuracy with no overfitting.
Details
Keywords
Anil Kumar Swain, Aleena Swetapadma, Jitendra Kumar Rout and Bunil Kumar Balabantaray
The objective of the proposed work is to identify the most commonly occurring non–small cell carcinoma types, such as adenocarcinoma and squamous cell carcinoma, within the human…
Abstract
Purpose
The objective of the proposed work is to identify the most commonly occurring non–small cell carcinoma types, such as adenocarcinoma and squamous cell carcinoma, within the human population. Another objective of the work is to reduce the false positive rate during the classification.
Design/methodology/approach
In this work, a hybrid method using convolutional neural networks (CNNs), extreme gradient boosting (XGBoost) and long-short-term memory networks (LSTMs) has been proposed to distinguish between lung adenocarcinoma and squamous cell carcinoma. To extract features from non–small cell lung carcinoma images, a three-layer convolution and three-layer max-pooling-based CNN is used. A few important features have been selected from the extracted features using the XGBoost algorithm as the optimal feature. Finally, LSTM has been used for the classification of carcinoma types. The accuracy of the proposed method is 99.57 per cent, and the false positive rate is 0.427 per cent.
Findings
The proposed CNN–XGBoost–LSTM hybrid method has significantly improved the results in distinguishing between adenocarcinoma and squamous cell carcinoma. The importance of the method can be outlined as follows: It has a very low false positive rate of 0.427 per cent. It has very high accuracy, i.e. 99.57 per cent. CNN-based features are providing accurate results in classifying lung carcinoma. It has the potential to serve as an assisting aid for doctors.
Practical implications
It can be used by doctors as a secondary tool for the analysis of non–small cell lung cancers.
Social implications
It can help rural doctors by sending the patients to specialized doctors for more analysis of lung cancer.
Originality/value
In this work, a hybrid method using CNN, XGBoost and LSTM has been proposed to distinguish between lung adenocarcinoma and squamous cell carcinoma. A three-layer convolution and three-layer max-pooling-based CNN is used to extract features from the non–small cell lung carcinoma images. A few important features have been selected from the extracted features using the XGBoost algorithm as the optimal feature. Finally, LSTM has been used for the classification of carcinoma types.