Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 30 July 2020

Alaa Tharwat

Classification techniques have been applied to many applications in various fields of sciences. There are several ways of evaluating classification algorithms. The analysis of…

44123

Abstract

Classification techniques have been applied to many applications in various fields of sciences. There are several ways of evaluating classification algorithms. The analysis of such metrics and its significance must be interpreted correctly for evaluating different learning algorithms. Most of these measures are scalar metrics and some of them are graphical methods. This paper introduces a detailed overview of the classification assessment measures with the aim of providing the basics of these measures and to show how it works to serve as a comprehensive source for researchers who are interested in this field. This overview starts by highlighting the definition of the confusion matrix in binary and multi-class classification problems. Many classification measures are also explained in details, and the influence of balanced and imbalanced data on each metric is presented. An illustrative example is introduced to show (1) how to calculate these measures in binary and multi-class classification problems, and (2) the robustness of some measures against balanced and imbalanced data. Moreover, some graphical measures such as Receiver operating characteristics (ROC), Precision-Recall, and Detection error trade-off (DET) curves are presented with details. Additionally, in a step-by-step approach, different numerical examples are demonstrated to explain the preprocessing steps of plotting ROC, PR, and DET curves.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Available. Open Access. Open Access
Article
Publication date: 4 August 2020

Alaa Tharwat

Independent component analysis (ICA) is a widely-used blind source separation technique. ICA has been applied to many applications. ICA is usually utilized as a black box, without…

36675

Abstract

Independent component analysis (ICA) is a widely-used blind source separation technique. ICA has been applied to many applications. ICA is usually utilized as a black box, without understanding its internal details. Therefore, in this paper, the basics of ICA are provided to show how it works to serve as a comprehensive source for researchers who are interested in this field. This paper starts by introducing the definition and underlying principles of ICA. Additionally, different numerical examples in a step-by-step approach are demonstrated to explain the preprocessing steps of ICA and the mixing and unmixing processes in ICA. Moreover, different ICA algorithms, challenges, and applications are presented.

Details

Applied Computing and Informatics, vol. 17 no. 2
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 2 of 2
Per page
102050