Search results
1 – 2 of 2Shadrack Fred Mahenge and Ala Alsanabani
In the purpose of the section, the cracks that are in the construction domain may be common and usually fixed with the human inspection which is at the visible range, but for the…
Abstract
Purpose
In the purpose of the section, the cracks that are in the construction domain may be common and usually fixed with the human inspection which is at the visible range, but for the cracks which may exist at the distant place for the human eye in the same building but can be captured with the camera. If the crack size is quite big can be visible but few cracks will be present due to the flaws in the construction of walls which needs authentic information and confirmation about it for the successful completion of the wall cracks, as these cracks in the wall will result in the structure collapse.
Design/methodology/approach
In the modern era of digital image processing, it has captured the importance in all the domain of engineering and all the fields irrespective of the division of the engineering, hence, in this research study an attempt is made to deal with the wall cracks which are found or searched during the building inspection process, in the present context in association with the unique U-net architecture is used with convolutional neural network method.
Findings
In the construction domain, the cracks may be common and usually fixed with the human inspection which is at the visible range, but for the cracks which may exist at the distant place for the human eye in the same building but can be captured with the camera. If the crack size is quite big can be visible but few cracks will be present due to the flaws in the construction of walls which needs authentic information and confirmation about it for the successful completion of the wall cracks, as these cracks in the wall will result in the structure collapse. Hence, for the modeling of the proposed system, it is considered with the image database from the Mendeley portal for the analysis. With the experimental analysis, it is noted and observed that the proposed system was able to detect the wall cracks, search the flat surface by the result of no cracks found and it is successful in dealing with the two phases of operation, namely, classification and segmentation with the deep learning technique. In contrast to other conventional methodologies, the proposed methodology produces excellent performance results.
Originality/value
The originality of the paper is to find the portion of the cracks on the walls using deep learning architecture.
Details
Keywords
Asad Ullah Khan, Saeed Ullah Jan, Muhammad Naeem Khan, Fazeelat Aziz, Jan Muhammad Sohu, Johar Ali, Maqbool Khan and Sohail Raza Chohan
Blockchain, a groundbreaking technology that recently surfaced, is under thorough scrutiny due to its prospective utility across different sectors. This research aims to delve…
Abstract
Purpose
Blockchain, a groundbreaking technology that recently surfaced, is under thorough scrutiny due to its prospective utility across different sectors. This research aims to delve into and assess the cognitive elements that impact the integration of blockchain technology (BT) within library environments.
Design/methodology/approach
Utilizing the Stimulus–Organism–Response (SOR) theory, this research aims to facilitate the implementation of BT within academic institution libraries and provide valuable insights for managerial decision-making. A two-staged deep learning structural equation modelling artificial neural network (ANN) analysis was conducted on 583 computer experts affiliated with academic institutions across various countries to gather relevant information.
Findings
The research model can correspondingly expound 71% and 60% of the variance in trust and adoption intention of BT in libraries, where ANN results indicate that perceived possession is the primary predictor, with a technical capability factor that has a normalized significance of 84%. The study successfully identified the relationship of each variable of our conceptual model.
Originality/value
Unlike the SOR theory framework that uses a linear model and theoretically assumes that all relationships are significant, to the best of the authors’ knowledge, it is the first study to validate ANN and SEM in a library context successfully. The results of the two-step PLS–SEM and ANN technique demonstrate that the usage of ANN validates the PLS–SEM analysis. ANN can represent complicated linear and nonlinear connections with higher prediction accuracy than SEM approaches. Also, an importance-performance Map analysis of the PLS–SEM data offers a more detailed insight into each factor's significance and performance.
Details