Vivekanandan D., Sakthivel M., Srinivasa Moorthy S. and Ajith Arul Daniel S.
In this study, TiO2 is used to enhance the mechanical properties of the composite material containing agave Americana fiber and polyester resin.
Abstract
Purpose
In this study, TiO2 is used to enhance the mechanical properties of the composite material containing agave Americana fiber and polyester resin.
Design/methodology/approach
Agave Americana fiber was first treated with 5% of NaOH, and the composition of treated and untreated fiber was kept constant, whereas the particulate and resin were alternatively used. The handlay method is used to fabricate the composite plates. The morphology of the composites was studied using scanning electron microscopy (SEM).
Findings
The composite was composed of 30% treated agave Americana, 10% of TiO2 particulates and 60% of a polyester resin for better and enhanced mechanical properties.
Practical implications
The composite can be used for aero-structural components, automobile components and other areas where light-weight components are required.
Originality/value
A new type of agave Americana fiber with TiO2 and polyester resin composite was fabricated and investigated.
Details
Keywords
Abdul Wahab Hashmi, Harlal Singh Mali, Anoj Meena, Shadab Ahmad and Yebing Tian
Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to…
Abstract
Purpose
Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to enhance its capabilities to be used in closed tolerance applications. This study aims to examine abrasive flow finishing for 3D printed polylactic acid (PLA) parts.
Design/methodology/approach
A new eco-friendly abrasive flow machining media (EFAFM) was developed, using paper pulp as a base material, waste vegetable oil as a liquid synthesizer and natural additives such as glycine to finish 3D printed parts. Characterization of the media was conducted through thermogravimetric analysis and Fourier transform infrared spectroscopy. PLA crescent prism parts were produced via fused deposition modelling (FDM) and finished using AFM, with experiments designed using central composite design (CCD). The impact of process parameters, including media viscosity, extrusion pressure, layer thickness and finishing time, on percentage improvement in surface roughness (%ΔRa) and material removal rate were analysed. Artificial neural network (ANN) and improved grey wolf optimizer (IGWO) were used for data modelling and optimization, respectively.
Findings
The abrasive media developed was effective for finishing FDM printed parts using AFM, with SEM images and 3D surface profile showing a significant improvement in surface topography. Optimal solutions were obtained using the ANN-IGWO approach. EFAFM was found to be a promising method for improving finishing quality on FDM 3D printed parts.
Research limitations/implications
The present study is focused on finishing FDM printed crescent prism parts using AFM. Future research may be done on more complex shapes and could explore the impact of different materials, such as thermoplastics and composites for different applications. Also, implication of other techniques, such as chemical vapour smoothing, mechanical polishing may be explored.
Practical implications
In the biomedical field, the use of 3D printing has revolutionized the way in which medical devices, implants and prosthetics are designed and manufactured. The biodegradable and biocompatible properties of PLA make it an ideal material for use in biomedical applications, such as the fabrication of surgical guides, dental models and tissue engineering scaffolds. The ability to finish PLA 3D printed parts using AFM can improve their biocompatibility, making them more suitable for use in the human body. The improved surface quality of 3D printed parts can also facilitate their sterilization, which is critical in the biomedical field.
Social implications
The use of eco-friendly abrasive flow finishing for 3D printed parts can have a positive impact on the environment by reducing waste and promoting sustainable manufacturing practices. Additionally, it can improve the quality and functionality of 3D printed products, leading to better performance and longer lifespans. This can have broader economic and societal benefits.
Originality/value
This AFM media constituents are paper pulp, waste vegetable oil, silicon carbide as abrasive and the mixture of “Aloe Barbadensis Mill” – “Cyamopsis Tetragonoloba” powder and glycine. This media was then used to finish 3D printed PLA crescent prism parts. The study also used an IGWO to optimize experimental data that had been modelled using an ANN.
Details
Keywords
Wiah Wardiningsih, Sandra Efendi, Rr. Wiwiek Mulyani, Totong Totong, Ryan Rudy and Samuel Pradana
This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.
Abstract
Purpose
This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.
Design/methodology/approach
The fiber was extracted using the biological retting process (cold-water retting). The intrinsic fiber properties obtained were used to evaluate the possibility of using fiber for textile applications.
Findings
The average length of a curcuma zedoaria fiber was 34.77 cm with a fineness value of 6.72 Tex. A bundle of curcuma zedoaria fibers was comprised of many elementary fibers. Curcuma zedoaria had an irregular cross-section, with the lumen having a varied oval shape. Curcuma zedoaria fibers had tenacity and elongation value of 3.32 gf/denier and 6.95%, respectively. Curcuma zedoaria fibers had a coefficient of friction value of 0.46. Curcuma zedoaria fibers belong to a hygroscopic fiber type with a moisture regain value of 10.29%.
Originality/value
Extraction and Characterization of Curcuma zedoaria Pseudo-stems Fibers for Textile Application.
Details
Keywords
S. Raj Sachin, T. Kandasamy Kannan and Rathanasamy Rajasekar
The purpose of this study is to carry out an investigation of the role of the wood particle size on the mechanical properties of poly lactic acid (PLA)-reinforced neem fiber…
Abstract
Purpose
The purpose of this study is to carry out an investigation of the role of the wood particle size on the mechanical properties of poly lactic acid (PLA)-reinforced neem fiber biocomposite.
Design/methodology/approach
Composite test specimens were processed by reinforcing neem wood flour (NWF) in two different particle sizes, micro-sized NWF (MNWF) and nano-sized NWF (NNWF) separately into PLA. Composites were extruded at four different fiber loadings (10, 15, 20 and 25 Wt.%) into PLA matrix. The MNWF and NNWF had particle sizes varying from 5 to 15 µm and 10 to 15 nm, respectively.
Findings
Tensile strength, flexural strength and impact strength of PLA increased with fiber reinforcement for both the MNWF and NNWF cases. The NNWF-reinforced PLA composite at 20 Wt.% fiber loading proved to be the best composite that had outstanding mechanical properties in this research.
Practical implications
The developed composite can be used as a substitute for conventional plywood for furniture, building infrastructure and interior components for the automobile, aircraft and railway sectors.
Originality/value
A new biocomposite had been fabricated by using PLA and NWF and had been tested for its mechanical characteristics.
Details
Keywords
The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational…
Abstract
Purpose
The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational analysis and desirability function approach (DFA).
Design/methodology/approach
The welded sheets were fabricated as per Taguchi orthogonal array design. The effects of tool rotational speed, transverse speed and tool tilt angle process parameters on ultimate tensile strength and hardness were analyzed using grey relational analysis, and DFA and optimum parameters combination was determined.
Findings
The tensile strength and hardness values were evaluated from the welded joints. The optimum values of process parameters were estimated through grey relational analysis and DFA methods. Similar kind of optimum levels of process parameters were obtained through two optimization approaches as tool rotational speed of 1150 rpm, transverse speed of 24 mm/min and tool tilt angle of 2° are the best process parameters combination for maximizing both the tensile strength and hardness. Through these studies, it was confirmed that grey relational analysis and DFA methods can be used to find the multi response optimum values of FSW process parameters.
Research limitations/implications
In the present study, the FSW is performed with L9 orthogonal array design with three process parameters such as tool rotational speed, transverse speed and tilt angle and three levels.
Practical implications
Aluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property.
Originality/value
Very limited work had been carried out on multi objective optimization techniques such as grey relational analysis and DFA on friction stir welded joints made with dissimilar aluminium alloys sheets.