Gaurav Dhuria, Rupinder Singh and Ajay Batish
The purpose of this paper is to study the effect of ultrasonic machining process parameters on surface quality while machining titanium alloy Ti-6Al-4V.
Abstract
Purpose
The purpose of this paper is to study the effect of ultrasonic machining process parameters on surface quality while machining titanium alloy Ti-6Al-4V.
Design/methodology/approach
Effect of cryogenic treatment (CT) of tool and work material was also explored in the study. Taguchi’s L18 orthogonal array was chosen for design of experiments and average surface roughness was measured.
Findings
Different modes of fracture were detected at work surface corresponding to varied input process parameters. Slurry grit size, power rating and tool material along with CT of work material were found to be the significant parameters affecting surface quality.
Originality/value
The results obtained have been modelled using artificial neural network approach.
Details
Keywords
Ashu Garg, Anirban Bhattacharya and Ajay Batish
The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and…
Abstract
Purpose
The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations.
Design/methodology/approach
Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts.
Findings
The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy.
Originality/value
The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.