Search results
1 – 4 of 4Mohammad Irfan, Aiqin Gao and Aiqin Hou
Reactive dyes are believed to have great potential for nylon dyeing, but these anionic dyes tend to rush toward the nylon at the beginning of the process, resulting in uneven…
Abstract
Purpose
Reactive dyes are believed to have great potential for nylon dyeing, but these anionic dyes tend to rush toward the nylon at the beginning of the process, resulting in uneven dyeing. Achieving uniformity gets even harder when the dyeing is performed under exposure to eco-friendly technique microwave irradiations. This study aims to achieve rapid and homogenous results by intermittent shaking and non-continuous exposure to microwave.
Design/methodology/approach
A set of reactive red dyes, based on the same chromophore and different substituents in the auxochrome part, was applied to the nylon fabric without any leveling agent. A series of experiments were designed to investigate the effect of different dye structures, exhaustion pH, liquor ratio, exhaustion time and fixation time to obtain an optimum recipe under the microwave dyeing technique.
Findings
Dyeing performance was characterized based on the color strength, exhaustion and fixation percentages and color fastness values. The characterization showed that better results can be achieved at a liquor ratio of 1:15 at exhaustion pH 2.7 which is also the isoelectric point of nylon, with 5.5 to 7 min of exhaustion and 6 to 8 min of fixation time for different dyes. Microwave dyed samples secured higher color strength values and provided better exhaustion and fixation than the conventional dye samples. Furthermore, the X-ray diffraction results verified that there was no considerable difference in the morphological structure of nylon with microwave exposure.
Originality/value
An applied technique is disclosed in this work to achieve uniform dyeing on nylon 66 with reactive dyes without any leveling agent under exposure to eco-friendly rapid heating microwave irradiations.
Details
Keywords
Min Li, Kaili Song, Kongliang Xie and Aiqin Hou
The purpose of this paper is to synthesise a disperse dye based on benzisothiazole and to characterise its crystal morphology, dispersing stability, to study the relationship…
Abstract
Purpose
The purpose of this paper is to synthesise a disperse dye based on benzisothiazole and to characterise its crystal morphology, dispersing stability, to study the relationship between the chemical structure and the dyeing property of the dye.
Design/methodology/approach
The disperse dye based on benzisothiazole, 3-(3-methyl-4-N-ethyl-N-benzyl-phenyldiazenyl)-5-nitro-2,1-benzisothiazoles, was synthesized. The disperse dye based on benzisothiazole, 3-(3-methyl-4-N-ethyl-N-benzyl-phenyldiazenyl)-5-nitro-2,1-benzisothiazoles, was synthesised. The chemical structure of the dye obtained was characterised by infrared spectrum Fourier transform infrared spectroscopy and nuclear magnetic resonance (1HNMR), and the crystal morphology was observed by Field Emission Scanning Electron Microscopy. Sodium salt of polycondensated naphthalenesulphonic acid (dispersing agent sodium salt of polycondensated naphthalenesulphonic acid [MF]) and a sulphonated amino polyether (anionic surfactant B600) were employed to grind and disperse the dye crystals. The dispersion property of the dye particles was characterised. Dyeing property of the dispersion system was also studied.
Findings
The dye formed spherical crystals that were made up of a large number of acicular crystals similar to spherical chrysanthemum. The crystals had warping crystal centres inside the spheres. The particle sizes of the dispersion with the mixture of B600 and MF had an uniform distribution and were smaller than that of the dispersion with only single dispersing agent MF. Dyeing with the dispersion system had an excellent reproducibility under alkalinic condition.
Practical implications
An alkalinic dyeing method for poly(ethylene terephthalate) (PET) with disperse dyes as a cleaner wet process had been developed. Such a process combined pretreatment and dyeing process using the alkali-stable disperse dyes and reduced the consumption of water and energy and improved production efficiency.
Originality/value
The crystal morphology, dispersion and dyeing properties of the synthesised disperse dye for dyeing PET fabric under alkalinic condition were discussed. This disperse dye has an important potential application in alkalinic dyeing method.
Details
Keywords
Kongliang Xie, Aiqin Hou and Lei Xu
The purpose of this paper is to investigate the effect of self‐emulsifying polysiloxanes containing multi‐cationic groups as resin on fastness properties of dyed cellulose fabrics.
Abstract
Purpose
The purpose of this paper is to investigate the effect of self‐emulsifying polysiloxanes containing multi‐cationic groups as resin on fastness properties of dyed cellulose fabrics.
Design/methodology/approach
Cellulose fabrics were dyed with three reactive dyes. Then, the self‐emulsifying polysiloxanes containing multi‐cationic groups as resin were applied to the dyed cellulose fabrics. The fastness properties were investigated.
Findings
The results show that the wet rubbing fastness, washing fastness and perspiration fastness of three dyed samples treated with novel self‐emulsifying polysiloxanes are higher than those of the dyed samples without the polymer treatment. The complexes of cellulose with the polysiloxanes having multi‐cationic groups are formed. With the increase of the quantity of cationic groups in the polymer macromolecules, the wet rubbing and washing fastness further increase. The self‐emulsifying polysiloxanes can affect the colour yields (K/S) of the dyed fabrics.
Originality/value
The self‐emulsifying polysiloxanes containing multi‐cationic groups are novel functional materials. They are easily self‐emulsifying in water, without the need of disperse agents, and form a transparent macromolecule colloid solution. Self‐emulsifying polysiloxanes as resins can change material properties to improve their wet fastness and gloss. They have potential application as resins in the coloration industry. This paper is an original research report and has not been published previously.
Details
Keywords
Aiqin Gao, Hongjuan Zhang and Kongliang Xie
– The purpose of this paper is to synthesise a tetrakisazo reactive dye and to characterise its dyeing property to meet the demand for better black reactive dyes.
Abstract
Purpose
The purpose of this paper is to synthesise a tetrakisazo reactive dye and to characterise its dyeing property to meet the demand for better black reactive dyes.
Design/methodology/approach
The novel tetrakisazo navy-blue reactive dye based on 4,4′-diaminostilbene-2,2′-disulphonic acid was designed and synthesized. The dyeing behaviour of it on cotton fabric was discussed. The synergistic blackening effect and absorbance spectra were investigated by absorbance and reflectance spectra, K/S and colorimetric data.
Findings
The exhaustion and fixation of the designed reactive dye were higher than 20 per cent than those of the commercial reactive dye, CI Reactive Black 5. The novel reactive dye has complementary with Reactive Red SPB and Reactive Yellow C-5R in absorbance spectra from 360 to 700 nm. Three reactive dyes had synergistic effect in colour deepening properties. The dyed cotton fabric possessed high K/S value and low reflectance in the whole visual spectrum range from 360 to 700 nm.
Practical implications
Comparison with the commercial Reactive Black DN-RN, the blackness of the dyed fabrics with the mixture dyes was greatly improved and the fastness properties on cotton fabrics were also good.
Originality/value
The paper is an original research work. Because the mixture dyes had better blackness and good fastness properties, it would have wide application in the dyeing of cotton fabric.
Details