Ailian Chang, Le Huang, Qian-Qian Li, Kambiz Vafai and Minglu Shao
The classical advection-dispersion equation (ADE) model cannot accurately depict the gas transport process in natural geological formations. This paper aims to study the behavior…
Abstract
Purpose
The classical advection-dispersion equation (ADE) model cannot accurately depict the gas transport process in natural geological formations. This paper aims to study the behavior of CO2 transport in fractal porous media by using an effective Hausdorff fractal derivative advection-dispersion equation (HFDADE) model.
Design/methodology/approach
Anomalous dispersion behaviors of CO2 transport are effectively characterized by the investigation of time and space Hausdorff derivatives on non-Euclidean fractal metrics. The numerical simulation has been performed with different Hausdorff fractal dimensions to reveal characteristics of the developed fractal ADE in fractal porous media. Numerical experiments focus on the influence of the time and space fractal dimensions on flow velocity and dispersion coefficient.
Findings
The physical mechanisms of parameters in the Hausdorff fractal derivative model are analyzed clearly. Numerical results demonstrate that the proposed model can well fit the history of gas production data and it can be a powerful technique for depicting the early arrival and long-tailed phenomenon by incorporating a fractal dimension.
Originality/value
To the best of the authors’ knowledge, first time these results are presented.
Details
Keywords
Ailian Chang, HongGuang Sun, K. Vafai and Erfan Kosari
This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological…
Abstract
Purpose
This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological behavior, where non-linear characteristics exist, for example, the inherent viscous behavior of the crude oil. The feasibility and flexibility of the fractional model are tested via a case study of non-Newtonian fluid. The finite element method is non-Newtonian used to numerically solve both momentum equation and energy equation to describe the fluid flow and convection heat transfer process.
Design/methodology/approach
This paper provides a comprehensive theoretical and numerical study of flow and heat transfer of non-Newtonian fluids in a pipe based on the fractional constitutive model. Contrary to fractional order a, the rheological property of non-Newtonian fluid changes from shear-thinning to shear-thickening with the increase of power-law index n, therefore the flow and heat transfer are hindered to some extent.
Findings
This paper discusses two dimensionless parameters on flow regime and thermal patterns, including Reynolds number (Re) and Nusselt number (Nu) in evaluating the flow rate and heat transfer rate. Analysis results show that the viscosity of the non-Newtonian fluid decreases with the rheological index (order α) increasing. While large fractional (order α) corresponds to the enhancement of heat transfer capacity.
Research limitations/implications
First, it is observed that the increase of the Re results in an increase of the local Nusselt number (Nul). It means the heat transfer enhancement ratio increases with Re. Meanwhile, the increasement of the Nul indicating the enhancement in the heat transfer coefficient, produces a higher speed flow of crude oil.
Originality/value
This study presents a new numerical investigation on characteristics of steady-state pipe flow and forced convection heat transfer by using a fractional constitutive model. The influences of various non-dimensional characteristic parameters of fluid on the velocity and temperature fields are analyzed in detail.
Details
Keywords
Minglu Shao, Zhanqi Fang, Mengjie Cheng, Lipei Fu, Kaili Liao and Ailian Chang
At present, research on the preparation of corrosion inhibitors using modified pyrimidine derivatives is still blank. The purpose of this study is to synthesize a new cationic…
Abstract
Purpose
At present, research on the preparation of corrosion inhibitors using modified pyrimidine derivatives is still blank. The purpose of this study is to synthesize a new cationic mercaptopyrimidine derivative quaternary ammonium salt, known as DTEBTAC, that can be used as a corrosion inhibitor to slow down the metal corrosion problems encountered in oil and gas extraction processes.
Design/methodology/approach
A new corrosion inhibitor was synthesized by the reaction of anti-Markovnikov addition and nucleophilic substitution. The weight loss method was used to study the corrosion inhibition characteristics of synthetic corrosion inhibitors. Electrochemical and surface topography analyses were used to determine the type of inhibitor and the adsorption state formed on the surface of N80 steel. Molecular dynamics simulations and quantum chemistry calculations were used to investigate the synthetic corrosion inhibitor’s molecular structure and corrosion inhibition mechanisms.
Findings
The results of the weight loss method show that when the dosage of DTEBTAC is 1%, the corrosion rate of N80 steel in hydrochloric acid solution at 90? is 3.3325 g m-2 h-1. Electrochemical and surface morphology analysis show that DTEBTAC can form a protective layer on the surface of N80 steel, and is a hybrid corrosion inhibitor that can inhibit the main anode. Quantum chemical parameter calculation shows that DTEBTAC has a better corrosion inhibition effect than DTP. The molecular dynamics simulation results show that DTEBTAC has stronger binding energy than DTP, and forms a network packing structure through hydrogen bonding, and the adsorption stability is enhanced.
Originality/value
A novel cationic mercaptopyrimidine derivative quaternium-ammonium salt corrosion inhibitor was designed and provided. Compared with the prior art, the preparation method of the synthesized mercaptopyrimidine derivative quaternary ammonium salt corrosion inhibitor is simple, and the presence of nitrogen-positive ions, sulfur atoms and nitrogen-rich atoms has an obvious corrosion inhibition effect, which can be used to inhibit metal corrosion during oil and gas field exploitation. It not only expands the application field of new materials but also provides a new idea for the research and development of new corrosion inhibitors.