Islam A. ElShaarawy, Essam H. Houssein, Fatma Helmy Ismail and Aboul Ella Hassanien
The purpose of this paper is to propose an enhanced elephant herding optimization (EEHO) algorithm by improving the exploration phase to overcome the fast-unjustified convergence…
Abstract
Purpose
The purpose of this paper is to propose an enhanced elephant herding optimization (EEHO) algorithm by improving the exploration phase to overcome the fast-unjustified convergence toward the origin of the native EHO. The exploration and exploitation of the proposed EEHO are achieved by updating both clan and separation operators.
Design/methodology/approach
The original EHO shows fast unjustified convergence toward the origin specifically, a constant function is used as a benchmark for inspecting the biased convergence of evolutionary algorithms. Furthermore, the star discrepancy measure is adopted to quantify the quality of the exploration phase of evolutionary algorithms in general.
Findings
In experiments, EEHO has shown a better performance of convergence rate compared with the original EHO. Reasons behind this performance are: EEHO proposes a more exploitative search method than the one used in EHO and the balanced control of exploration and exploitation based on fixing clan updating operator and separating operator. Operator γ is added to EEHO assists to escape from local optima, which commonly exist in the search space. The proposed EEHO controls the convergence rate and the random walk independently. Eventually, the quantitative and qualitative results revealed that the proposed EEHO outperforms the original EHO.
Research limitations/implications
Therefore, the pros and cons are reported as follows: pros of EEHO compared to EHO – 1) unbiased exploration of the whole search space thanks to the proposed update operator that fixed the unjustified convergence of the EHO toward the origin and the proposed separating operator that fixed the tendency of EHO to introduce new elephants at the boundary of the search space; and 2) the ability to control exploration–exploitation trade-off by independently controverting the convergence rate and the random walk using different parameters – cons EEHO compared to EHO: 1) suitable values for three parameters (rather than two only) have to be found to use EEHO.
Originality/value
As the original EHO shows fast unjustified convergence toward the origin specifically, the search method adopted in EEHO is more exploitative than the one used in EHO because of the balanced control of exploration and exploitation based on fixing clan updating operator and separating operator. Further, the star discrepancy measure is adopted to quantify the quality of exploration phase of evolutionary algorithms in general. Operator γ that added EEHO allows the successive local and global searching (exploration and exploitation) and helps escaping from local minima that commonly exist in the search space.
Details
Keywords
Mohamed A. Tawhid and Kevin B. Dsouza
In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed…
Abstract
In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed algorithm is called Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm (HBBEPSO). In the proposed HBBEPSO algorithm, we combine the bat algorithm with its capacity for echolocation helping explore the feature space and enhanced version of the particle swarm optimization with its ability to converge to the best global solution in the search space. In order to investigate the general performance of the proposed HBBEPSO algorithm, the proposed algorithm is compared with the original optimizers and other optimizers that have been used for feature selection in the past. A set of assessment indicators are used to evaluate and compare the different optimizers over 20 standard data sets obtained from the UCI repository. Results prove the ability of the proposed HBBEPSO algorithm to search the feature space for optimal feature combinations.
Details
Keywords
Sasi B. Swapna and R. Santhosh
The miniscule wireless sensor nodes, engaged in the wide range of applications for its capability of monitoring the physical changes around, requires an improved routing strategy…
Abstract
Purpose
The miniscule wireless sensor nodes, engaged in the wide range of applications for its capability of monitoring the physical changes around, requires an improved routing strategy with the befitting sensor node arrangement that plays a vital part in ensuring a completeness of the network coverage.
Design/methodology/approach
This paves way for the reduced energy consumption, the enhanced network connections and network longevity. The conventional methods and the evolutionary algorithms developed for arranging of the node ended with the less effectiveness and early convergence with the local optimum respectively.
Findings
The paper puts forward the befitting arrangement of the sensor nodes, cluster-head selection and the delayless routing using the ant lion (A-L) optimizer to achieve the substantial coverage, connection, the network-longevity and minimized energy consumption.
Originality/value
The further performance analysis of the proposed system is carried out with the simulation using the network simulator-2 and compared with the genetic algorithm and the particle swarm optimization algorithm to substantiate the competence of the proposed routing method using the ant lion optimization.