Search results
1 – 3 of 3Abdulbasit Almhafdy and Abdullah Mohammed Alsehail
This paper investigates the optimization of window design factors (WDFs) in hospital buildings, particularly in government hospitals within the arid climate of the Qassim region…
Abstract
Purpose
This paper investigates the optimization of window design factors (WDFs) in hospital buildings, particularly in government hospitals within the arid climate of the Qassim region, with the aim of achieving a better cooling load reduction. Continuous monitoring of the hospital ward section is crucial due to patients' needs, requiring optimal indoor air quality and cooling load.
Design/methodology/approach
The study identifies the optimal conditions for WDF design to mitigate cooling load, including window-to-wall ratio (WWR), window orientation (WO), room size and U-value (thermal properties), effectively reduce energy consumption in terms of sensible cooling load (MWh/m2) and comply with local codes. Data collection involved a smart weather station, while the Integrated Environmental Solution Virtual Environment (IESVE) software facilitated the simulation process.
Findings
Key findings reveal that larger patient rooms were about 40% more energy-efficient than smaller rooms. The northern orientation showed lower energy consumption, and specific WWRs and glazing U-values significantly affected energy loads. In an analysis of U-value changes in energy performance based on the Saudi Building Code (SBC), the presented values did not meet the minimum energy consumption standards. For a valid 40% WWR with a thermal permeability of 2.89, 0.181 MWh/m2 was consumed, while for an invalid 100% WWR with the same permeability but facing the north, 0.156 MWh/m2 was consumed, which is considered an invalid practice. It is vital to follow prescribed standards to ensure energy efficiency and avoid unnecessary costs.
Originality/value
Focus lies in emphasizing the significance of adhering to prescribed standards, such as SBC, to guarantee energy efficiency and prevent unwarranted expenses. Additionally, the authors highlight the crucial role of optimizing glazing properties and allocating the WWR appropriately to achieve energy-efficient building design, accounting for diverse orientations and climatic conditions.
Details
Keywords
Attiqur Rehman, Ali GhaffarianHoseini, Nicola Naismith, Abdulbasit Almhafdy, Amirhosein Ghaffarianhoseini, John Tookey and Shafiq Urrehman
Autonomous vehicles (AVs) have the potential to transform the infrastructure, mobility and social well-being paradigms in New Zealand (NZ) amid its unprecedented population and…
Abstract
Purpose
Autonomous vehicles (AVs) have the potential to transform the infrastructure, mobility and social well-being paradigms in New Zealand (NZ) amid its unprecedented population and road safety challenges. But, public acceptance, co-evolution of regulations and AV technology based on interpersonal and institutional trust perspectives pose significant challenges. Previous theories and models need to be more comprehensive to address trust influencing autonomous driving (AD) factors in natural settings. Therefore, this study aims to find key AD factors corresponding to the chain of human-machine interaction (HMI) events happening in real time and formulate a guiding framework for the successful deployment of AVs in NZ.
Design/methodology/approach
This study utilized a comprehensive literature review complemented by an AV users’ study with 15 participants. AV driving sprints were conducted on low, medium and high-density roads in Auckland, followed by 15 ideation workshops to gather data about the users’ observations, feelings and attitudes towards the AVs during HMI.
Findings
This research study determined nine essential trust-influencing AD determinants in HMI and legal readiness domains. These AD determinants were analyzed, corresponding to eight AV events in three phases. Subsequently, a guiding framework was developed based on these factors, i.e. human-machine interaction autonomous driving events relationship identification framework (HMI-ADERIF) for the deployment of AVs in New Zealand.
Research limitations/implications
This study was conducted only in specific Auckland areas.
Practical implications
This study is significant for advanced design research and provides valuable insights, guidelines and deployment pathways for designers, practitioners and regulators when developing HMI Systems for AD vehicles.
Originality/value
This study is the first-ever AV user study in New Zealand in live traffic conditions. This user study also claimed its novelty due to AV trials in congested and fast-moving traffic on the four-lane motorway in New Zealand. Previously, none of the studies conducted AV user study on SUV BMW vehicle and motorway in real-time traffic conditions; all operations were completely autonomous without any input from the driver. Thus, it explored the essential autonomous driving (AD) trust influencing variables in human factors and legal readiness domains. This research is also unique in identifying critical AD determinants that affect the user trust, acceptance and adoption of AVs in New Zealand by bridging the socio-technical gap with futuristic research insights.
Details
Keywords
Sarah Nazari, Payam Keshavarz Mirza Mohammadi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Dat Tien Doan and Abdulbasit Almhafdy
This paper aims to investigate the optimization of window and shading designs to reduce the building energy consumption of a standard office room while improving occupants'…
Abstract
Purpose
This paper aims to investigate the optimization of window and shading designs to reduce the building energy consumption of a standard office room while improving occupants' comfort in Tehran and Auckland.
Design/methodology/approach
The NSGA-II algorithm, as a multi-objective optimization method, is applied in this study. First, a comparison of the effects of each variable on all objectives in both cities is conducted. Afterwards, the optimal solutions and the most undesirable scenarios for each city are presented for architects and decision-makers to select or avoid.
Findings
The results indicate that, in both cities, the number of slats and their distance from the wall are the most influential variables for shading configurations. Additionally, occupants' thermal comfort in Auckland is much better than in Tehran, while the latter city can receive more daylight. Furthermore, the annual energy use in Tehran can be significantly reduced by using a proper shading device and window-to-wall ratio (WWR), while building energy consumption, especially heating, is negligible in Auckland.
Originality/value
To the best of the authors' knowledge, this is the first study that compares the differences in window and shading design between two cities, Tehran and Auckland, with similar latitudes but located in different hemispheres. The outcomes of this study can benefit two groups: firstly, architects and decision-makers can choose an appropriate WWR and shading to enhance building energy efficiency and occupants' comfort. Secondly, researchers who want to study window and shading systems can implement this approach for different climates.
Details