Pervasive analytics act as a prominent role in computer-aided prediction of non-communicating diseases. In the early stage, arrhythmia diagnosis detection helps prevent the cause…
Abstract
Purpose
Pervasive analytics act as a prominent role in computer-aided prediction of non-communicating diseases. In the early stage, arrhythmia diagnosis detection helps prevent the cause of death suddenly owing to heart failure or heart stroke. The arrhythmia scope can be identified by electrocardiogram (ECG) report.
Design/methodology/approach
The ECG report has been used extensively by several clinical experts. However, diagnosis accuracy has been dependent on clinical experience. For the prediction methods of computer-aided heart disease, both accuracy and sensitivity metrics play a remarkable part. Hence, the existing research contributions have optimized the machine-learning approaches to have a great significance in computer-aided methods, which perform predictive analysis of arrhythmia detection.
Findings
In reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.
Originality/value
In reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.
Details
Keywords
Fuad Ali Mohammed Al-Yarimi, Nabil Mohammed Ali Munassar and Fahd N. Al-Wesabi
Digital computing and machine learning-driven predictive analysis in the diagnosis of non-communicable diseases are gaining significance. Globally many research studies are…
Abstract
Purpose
Digital computing and machine learning-driven predictive analysis in the diagnosis of non-communicable diseases are gaining significance. Globally many research studies are focusing on developing comprehensive models for such detection. Categorically in the proposed diagnosis for arrhythmia, which is a critical diagnosis to prevent cardiac-related deaths, any constructive models can be a value proposition. In this study, the focus is on developing a holistic system that predicts the scope of arrhythmia from the given electrocardiogram report. The proposed method is using the sequential patterns of the electrocardiogram elements as features.
Design/methodology/approach
Considering the decision accuracy of the contemporary classification methods, which is not adequate to use in clinical practices, this manuscript coined a new dimension of features to perform supervised learning and classification using the AdaBoost classifier. The proposed method has titled “Electrocardiogram stream level correlated patterns as features (ESCPFs),” which takes electrocardiograms (ECGs) signal streams as input records to perform supervised learning-based classification to detect the arrhythmia scope in given ECG record.
Findings
From the results and comparative reports generated for the study, it is evident that the model is performing with higher accuracy compared to some of the earlier models. However, focusing on the emerging solutions and technologies, if the accuracy factors for the model can be improved, it can lead to compelling predictions and accurate outcome from the process.
Originality/value
The authors represent complete automatic and rapid arrhythmia as classifier, which could be applied online and examine long ECG records sequence efficiently. By releasing the needs for extraction of features, the authors project an application based on raw signals, one result to heart rates date, whose objective is to lessen computation time when attaining minimum classification error outcomes.
Details
Keywords
Vanishree Beloor and T.S. Nanjundeswaraswamy
The purpose of this study is to determine the enablers of the quality of work life (QWL) of employees working in the Garment industries.
Abstract
Purpose
The purpose of this study is to determine the enablers of the quality of work life (QWL) of employees working in the Garment industries.
Design/methodology/approach
The study was carried out in a fivefold step. In the first step, the enablers of QWL were identified through an exhaustive literature survey, in the second step identified vital few components through Pareto analysis. Then the third step was followed by exploratory factor analysis (EFA) to further, to identify the precise components and validate the same using confirmatory factor analysis in fourth step. The final step included interpretive structural modeling and Cross-Impact Matrix Multiplication Applied to Classification analysis to model the validated components and determine the interrelationships and linkages.
Findings
Predominant QWL enablers of employees working in the garment industries are training and development, satisfaction in job, compensation and rewards, relation and co-operation, grievance handling, work environment, job nature, job security and facilities.
Research limitations/implications
In this study, the interpretive structural model is designed based on the opinion of the experts who are working in the garment industry considering the responses from employees in garment sectors. The framework can be extended further to the other sectors.
Practical implications
In future, the researchers in QWL may develop a model to quantify the level of employees’ QWL who are working in different sectors. Enablers of QWL are essential, and based on this further statistical analysis can be carried out. This study will provide limelight to the researchers in choosing the valid and reliable set of enablers for the empirical studies. Organizations can get benefit by implementing the outcome of this research for the enhancement of the QWL of employees.
Originality/value
The study was carried out in 133 garment industries where 851 workers constituted the final valid responses that were considered for analysis. The outcomes from the study help administrators, policy and decision-takers in taking decisions to enhance QWL.
Details
Keywords
Muhammad Kashif Imran, Muhammad Ilyas, Usman Aslam and Tehreem Fatima
In current era, firms are facing difficulties in aligning their capabilities with the hallmarks of the knowledge-intensive economy. Notwithstanding the fact that employees’…
Abstract
Purpose
In current era, firms are facing difficulties in aligning their capabilities with the hallmarks of the knowledge-intensive economy. Notwithstanding the fact that employees’ creativity ensures competitive advantage through innovation, firms are unable to reap the required level of performance. The purpose of this paper is to investigate the linkage among knowledge processes, employee creativity and firm performance. Moreover, the current quantitative study measures the moderating effect of a knowledge-intensive culture on knowledge processes and employee creativity.
Design/methodology/approach
Surveys were conducted in eight services sector organizations operating in southern Punjab, Pakistan, and responses were obtained from 197 employees selected at random. To test the exposition using an empirical data analysis approach, three core hypotheses are drawn, and to test these hypotheses, multiple regression analyses, Preacher and Hayes (2004) mediation analysis and Aguinis (2004) guidelines were applied on 197 responses.
Findings
The results explain that knowledge processes have a positive impact on firm performance and employee creativity partially mediates their stated relationship. Moreover, a knowledge-intensive culture has a strengthening effect on the relationship between knowledge processes and employee creativity. In-depth investigation outlines that knowledge acquisition, sharing and application are more influencing processes to enhance firm performance. Furthermore, knowledge conversion and protection do not hold significant relevance with firm performance but are supportive elements for other processes.
Research limitations/implications
In order to have a sustained performance, firms have to initiate steps to promote employees’ creativity by deploying an optimal mix of knowledge processes and flourish a knowledge-intensive culture in routine organizational life. Moreover, knowledge processes are important to promote creative behavior in employees that will lead to incessant innovation and firm performance.
Originality/value
This study gives meaningful thoughts to unexplored areas in the field of knowledge management. First, the indirect effect of knowledge processes on firm performance through employees’ creativity. Second, the importance of knowledge processes to enhance employees’ creativity in the presence of a knowledge-intensive culture. This study gets together the dynamic constructs in the field of knowledge management, such as knowledge-intensive culture and employee creativity, and describes the linkage between knowledge processes and firm performance.