Search results

1 – 2 of 2
Article
Publication date: 6 July 2015

Juan C. Vanegas-Acosta, V. Lancellotti and A.P.M. Zwamborn

Electric fields (EFs) are known to influence cell and tissue activity. This influence can be due to thermal or non-thermal effects. While the non-thermal effects are still matter…

Abstract

Purpose

Electric fields (EFs) are known to influence cell and tissue activity. This influence can be due to thermal or non-thermal effects. While the non-thermal effects are still matter of discussion, thermal effects might be detrimental for cell and tissue viability due to thermal damage, this fact being exploited by applications like hyperthermia and tissue ablation. The paper aims to discuss these issues.

Design/methodology/approach

In this work the authors investigate the influence of thermal damage in the consolidation of bone formation during electrostimulation (ES). The authors introduce a mathematical model describing the migration of osteoprogenitor cells, the thermal variation, the thermal damage accumulation and the formation of new bone matrix in an injury (fracture) site.

Findings

Numerical results are in agreement with experimental data and show that EFs more intense than 7.5 V/cm are detrimental for the viability of osteoprogenitor cells and the formation of new bone.

Originality/value

The model is suitable to conduct dosimetry studies in support of other different ES techniques aimed at improving bone and soft tissues repair.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Edita Kolarova and Lubomir Brancik

The purpose of this paper is to determine confidence intervals for the stochastic solutions in RLCG cells with a potential source influenced by coloured noise.

Abstract

Purpose

The purpose of this paper is to determine confidence intervals for the stochastic solutions in RLCG cells with a potential source influenced by coloured noise.

Design/methodology/approach

The deterministic model of the basic RLCG cell leads to an ordinary differential equation. In this paper, a stochastic model is formulated and the corresponding stochastic differential equation is analysed using the Itô stochastic calculus.

Findings

Equations for the first and the second moment of the stochastic solution of the coloured noise-affected RLCG cell are obtained, and the corresponding confidence intervals are determined. The moment equations lead to ordinary differential equations, which are solved numerically by an implicit Euler scheme, which turns out to be very effective. For comparison, the confidence intervals are computed statistically by an implementation of the Euler scheme using stochastic differential equations.

Practical implications/implications

The theoretical results are illustrated by examples. Numerical simulations in the examples are carried out using Matlab. A possible generalization for transmission line models is indicated.

Originality/value

The Itô-type stochastic differential equation describing the coloured noise RLCG cell is formulated, and equations for the respective moments are derived. Owing to this original approach, the confidence intervals can be found more effectively by solving a system of ordinary differential equations rather than by using statistical methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2