Search results

1 – 10 of 44
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 22 January 2025

Adeola John Omowaye, Adedayo Naheem Adesina, Taoqer Ayobami Aleem, Joshua Ayodeji Omowaye and Samuel Olukayode Ayinde

The purpose of this study is to investigate the impact of Arrhenius kinetics on hydromagnetic free convection of an electrically conducting fluid flowing past a vertically…

3

Abstract

Purpose

The purpose of this study is to investigate the impact of Arrhenius kinetics on hydromagnetic free convection of an electrically conducting fluid flowing past a vertically stretched sheet maintained at a constant temperature, considering viscous dissipation. In this study, the understanding of the Biot number is essential for comprehending and enhancing heat transfer processes in a flow. Mastering this concept is crucial for the efficient design and management of various industrial and natural systems. The effect of Newtonian heating is accurately addressed by adjusting the traditional temperature boundary condition.

Design/methodology/approach

The presiding inconsistent Partial differential equations are contrasted to ordinary differential equations by similitude changes and the solutions are completed numerically by fourth-order Runge-Kutta (RK-4) and shooting procedures. Tables and graphs feature vividly in annotating the outcomes of changing parameters on the flow.

Findings

Notably, the Biot number significantly impacts temperature gradients and distribution, which subsequently affect the flow’s velocity and thermal characteristics; that is, velocity and temperature contours increase directly to an upsurge in the Biot number. Contrasting with existing work, a perfect harmony is experienced. Arrhenius kinetics are essential for predicting and managing fluid flow behaviour in systems where reactions are sensitive to temperature. Grasping this relationship helps engineers and scientists enhance process efficiency, ensure safety and optimize fluid-based systems. Similarly, Newtonian heating significantly impacts fluid flow by affecting temperature distribution, viscosity, buoyancy-driven flows and flow stability. Mastering the control of this heating process is vital in both natural and engineered fluid systems. Technical applications of this research include variation cooling and atomic power generation refrigeration.

Originality/value

The distinguishing quality of this research lies in the scrutiny of Arrhenius steady hydromagnetic heat transfer to natural convection flow in a stretching upright sheet: viscous dissipation and Newtonian heating. To best of the authors’ understanding, a problem like this has not been considered. The findings in this work will give useful information to scientists and engineers.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 20 December 2024

Adeola John Omowaye, Taoqer Ayobami Aleem, Adedayo Naheem Adesina and Samuel Olukayode Ayinde

The purpose of this research is to investigate the behavior of continuous hydromagnetic convective fluid within a porous medium. In this study, all fluid properties are assumed to…

4

Abstract

Purpose

The purpose of this research is to investigate the behavior of continuous hydromagnetic convective fluid within a porous medium. In this study, all fluid properties are assumed to remain constant, except for viscosity, which varies inversely with temperature. Additionally, the fluid experiences Newtonian heating, and the effects of the Dufour and Soret phenomena are considered. The study also examines how controlling constants affect the velocity, temperature and concentration profiles.

Design/methodology/approach

The model equations are transformed to ordinary differential equations adopting similarity transformations. The resulting coupled nonlinear differential equations are then solved numerically using the shooting method combined with the fourth order Runge-Kutta (RK-4) technique. The effects of varying parameters on the flow are presented through graphs and tables.

Findings

The consequences of supervising constants on the flow are encapsulated in charts. The findings are that the Biot number is crucial in determining the temperature distribution within a solid during transient heat transfer; a reduction in the velocity chart is experienced as the size of suction grows; the temperature distribution over the upright heated plate escalates dramatically as Dufour(Du) shot up; and a rise in fluid velocity as the Soret parameter increases. The current results are annotated in sketches for better understanding. Findings are authenticated in contrast with published works. Finally, viscosity dependent on temperature and Newtonian heating are crucial in determining the flow characteristics, heat transfer efficiency, pressure drop, flow stability and overall performance of fluid systems. Understanding and accounting for these variations are essential for the optimal design and operation of engineering applications involving fluids.

Originality/value

The peculiarity of the research is perusal of exploration of viscosity dependent on temperature and Newtonian heating above steady hydromagnetic convective flow in a percolating environment: Soret, Dufour consequences. To the best of authors’ understanding, problem like this has not been considered. The findings in this work will give a useful information to scientists and engineers.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 9 October 2019

Bidemi Olumide Falodun and Adeola John Omowaye

This paper aims to address the problem of double-diffusive magnetohydrodynamics (MHD) non-Darcy convective flow of heat and mass transfer over a stretching sheet embedded in a

81

Abstract

Purpose

This paper aims to address the problem of double-diffusive magnetohydrodynamics (MHD) non-Darcy convective flow of heat and mass transfer over a stretching sheet embedded in a thermally-stratified porous medium. The controlling parameters such as chemical reaction parameter, permeability parameter, etc., are extensively discussed and illustrated in this paper.

Design/methodology/approach

With the help of appropriate similarity variables, the governing partial differential equations are converted into ordinary differential equations. The transformed equations are solved using the spectral homotopy analysis method (SHAM). SHAM is a numerical method, which uses Chebyshev pseudospectral and homotopy analysis method in solving science and engineering problems.

Findings

The effects of all controlling parameters are presented using graphical representations. The results revealed that the applied magnetic field in the transverse direction to the flow gives rise to a resistive force called Lorentz. This force tends to reduce the flow of an electrically conducting fluid in the problem of heat and mass transfer. As a result, the fluid velocity reduces in the boundary layer. Also, the suction increases the velocity, temperature, and concentration of the fluid, respectively. The present results can be used in complex problems dealing with double-diffusive MHD non-Darcy convective flow of heat and mass transfer.

Originality/value

The uniqueness of this paper is the examination of double-diffusive MHD non-Darcy convective flow of heat and mass transfer. It is considered over a stretching sheet embedded in a thermally-stratified porous medium. To the best of the knowledge, a problem of this type has not been considered in the past. A novel method called SHAM is used to solve this modelled problem. The novelty of this method is its accuracy and fastness in computation.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 19 September 2018

O.K. Koriko, I.L. Animasaun, A.J. Omowaye and T. Oreyeni

The purpose of this paper is to consider the problem of thermal destratification facing engineers and scientists during the motion of fluids which consist of rigid and randomly…

179

Abstract

Purpose

The purpose of this paper is to consider the problem of thermal destratification facing engineers and scientists during the motion of fluids which consist of rigid and randomly oriented particles suspended in a viscous medium under the influence of Lorentz force. This paper provides an insight into the non-linear transfer of thermal radiation within the boundary layer.

Design/methodology/approach

Similarity transformation and parameterization of the non-linear partial differential equation are carried out. The approximate analytical solution of the governing equation which models the free convective flow of strong and weak concentration of micro-elements in a micropolar fluid over a vertical surface is presented.

Findings

It is observed that the velocity and temperature distribution are decreasing properties of thermal stratification parameter St. Maximum local skin friction coefficients are ascertained at an epilimnion level (St=0) when the magnitude of thermal radiation is small. Thermal stratification parameter has no significant effect on the temperature distribution in the flow near a free stream.

Originality/value

The relationship between stratification of temperature and the transfer of thermal energy during the problem of thermal destratification facing engineers and scientist during the motion of fluids which consist of rigid and randomly oriented particles suspended in a viscous medium under the influence of Lorentz force is unravelled in this paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 21 June 2018

Anantha Kumar K., Ramana Reddy J.V., Sugunamma V. and N. Sandeep

The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential…

73

Abstract

Purpose

The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential heat source.

Design/methodology/approach

The group of PDE is mutated as dimension free with the assistance of similarity transformations and these are highly nonlinear and coupled. The authors solved the coupled ODE’s with the help of fourth-order Runge–Kutta based shooting technique. The impact of dimensionless sundry parameters on three usual distributions of the flow was analyzed and bestowed graphically. Along with them friction factor, heat and mass transfer rates have been assessed and represented with the aid of table.

Findings

Results exhibited that all the flow fields (velocity, concentration and temperature) are decreasing functions of melting parameter. Also the presence of cross-diffusion highly affects the heat and mass transfer performance.

Originality/value

Present paper deals with the heat and mass transfer characteristics of magnetohydrodynamics flow of non-Newtonian fluids past a melting surface. The effect of exponential heat source is also considered. Moreover this is a new work in the field of heat transfer in non-Newtonian fluid flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 5 August 2021

Gladys Tharapatla, Pamula Rajakumari and Ramana G.V. Reddy

This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical…

59

Abstract

Purpose

This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical approach.

Design/methodology/approach

The flow equations are set up with the non-linear free convective term, thermal radiation, nanofluids and Soret–Dufour effects. Thus, the non-linear partial differential equations of the flow analysis were simplified by using similarity transformation to obtain non-linear coupled equations. The set of simplified equations are solved by using the spectral homotopy analysis method (SHAM) and the spectral relaxation method (SRM). SHAM uses the approach of Chebyshev pseudospectral alongside the homotopy analysis. The SRM uses the concept of Gauss-Seidel techniques to the linear system of equations.

Findings

Findings revealed that a large value of the non-linear convective parameters for both temperature and concentration increases the velocity profile. A large value of the Williamson term is detected to elevate the velocity plot, whereas the Casson parameter degenerates the velocity profile. The thermal radiation was found to elevate both velocity and temperature as its value increases. The imposed magnetic field was found to slow down the fluid velocity by originating the Lorentz force.

Originality/value

The novelty of this paper is to explore the heat and mass transfer effects on MHD non-Newtonian fluids flow through an inclined thermally-stratified porous medium. The model is formulated in an inclined plate and embedded in a thermally-stratified porous medium which to the best of the knowledge has not been explored before in literature. Two elegance spectral numerical techniques have been used in solving the modeled equations. Both SRM and SHAM were found to be accurate.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 27 April 2020

Moses Sunday Dada and Cletus Onwubuoya

The purpose of this paper is to consider heat and mass transfer on magnetohydrodynamics (MHD) Williamson fluid flow over a slendering stretching sheet with variable thickness in…

69

Abstract

Purpose

The purpose of this paper is to consider heat and mass transfer on magnetohydrodynamics (MHD) Williamson fluid flow over a slendering stretching sheet with variable thickness in the presence of radiation and chemical reaction. All pertinent flow parameters are discussed and their influence on the hydrodynamics, thermal and concentration boundary layer are presented with the aid of the diagram.

Design/methodology/approach

The governing partial differential equations are reduced into a system of ordinary differential equations with the help of suitable similarity variables. A discrete version of the homotopy analysis method (HAM) called the spectral homotopy analysis method (SHAM) was used to solve the transformed equations. SHAM is efficient, and it converges faster than the HAM. The SHAM provides flexibility when solving linear ordinary differential equations with the use of the Chebyshev spectral collocation method.

Findings

The findings revealed that an increase in the variable thermal conductivity hike the temperature and the thermal boundary layer thickness, whereas the reverse is the case for velocity close to the wall.

Originality/value

The uniqueness of this paper is the exploration of combined effects of heat and mass transfer on MHD Williamson fluid flow over a slendering stretching sheet. The Williamson fluid term in the momentum equation is expressed as a linear function and the viscosity and thermal conductivity are considered to vary in the boundary layer.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 11 December 2024

Gollapalli Shankar and Siva Reddy Sheri

This research investigates the impact of Dufour effects and viscous dissipation on unsteady magnetohydrodynamic (MHD) natural convection in an incompressible, viscous, and…

9

Abstract

Purpose

This research investigates the impact of Dufour effects and viscous dissipation on unsteady magnetohydrodynamic (MHD) natural convection in an incompressible, viscous, and electrically conductive fluid over a vertically oscillating flat plate. The study highlights the significance of magnetic fields in influencing thermal and mass transfer, particularly in the context of thermal radiation. Computational fluid dynamics method including finite difference or finite element techniques can be used to crack the governing equations of the fluid flow. In this work, we used the finite element method (FEM) numerical technique to analyze the numerical behavior of unsteady boundary layer flow of Casson fluid with natural convection past an oscillating vertical plate. Key parameters such as skin friction, temperature, concentration, velocity and Sherwood numbers are derived and analyzed. The results demonstrate that viscous dissipation significantly elevates the fluid temperature, while an increase in the radiation parameter is associated with a decrease in internal friction at the plate. These findings provide critical insights into the interplay between thermal radiation and magnetic fields in MHD flows, with potential applications in engineering systems involving heat and mass transfer, such as cooling systems and material processing. This study underscores the importance of understanding these dynamics for optimizing the performance of MHD applications in various industrial settings.

Design/methodology/approach

The mainly authorized and energetic FEM to explain the non-linear, dimensionless partial differential equations (11–13) via equation with boundary conditions (14) makes use of Bathe (36), Reddy (37), Connor (38) and Chung (39). Following are the key steps that make up the method: discretize the domain, derivation of element equation, assembly of element equation, imposition of boundary condition and solution of assembly equation.

Findings

This study examined the impact of viscid dissipative radiation and the Dufour effect on unsteady one-dimensional MHD natural convective flow of a viscous, incompressible, electrically conducting fluid past an infinite moving vertical flat plate with a chemical reaction. Numerically solving the governing equations using the FEM approach is efficient and precise, aiming to be applied to fluid mechanics and related problems. Along with their effects on temperature, concentration and velocity, the following parameters are included: the mass Grashof number, the Soret number, the Grashof number, the Prandtl number, chemical reaction, the Schmidt number, radiation and the Casson parameter. Both the Grashof numbers of thermal and mass rates (Gr, Gm) make an increment in the velocity region. The velocity decreases with an increase in the magnetic parameter. The velocity increases with an increase in the permeability of the porous medium parameter. The temperature flow rate is higher for both Dufour and Viscid dissipation, while a decrement is noted of both Prandtl number and radiation effects. The decrementing behavior of the concentration region is observed at supreme inputs of chemical reaction coefficient and Schmidt number.

Originality/value

This is an original paper and not submitted anywhere.

Details

Multidiscipline Modeling in Materials and Structures, vol. 21 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 18 June 2024

Bidemi Olumide Falodun, Musa Oladipupo Tijani, Ibrahim Oyeyemi Adenekan, Olabode Amos Abraham and Tolulope Idiat Ogunsanya

The purpose of this study is to consider the dynamics of Casson–Walters-B alongside gyrotactic microorganisms through the investigation of antibacterial and antiviral mechanisms…

6

Abstract

Purpose

The purpose of this study is to consider the dynamics of Casson–Walters-B alongside gyrotactic microorganisms through the investigation of antibacterial and antiviral mechanisms using silver nanoparticles (AgNPs). The Casson fluid and Walters-B flow from the penetrable plate to the boundary layer (BL) in this analysis. The antiviral and antibacterial mechanisms of AgNPs were separately examined in this study.

Design/methodology/approach

The physical phenomenon of this problem was analyzed with partial differential equations (PDEs). These PDEs were changed into ordinary differential equations (ODEs) to further explain the significance of pertinent control parameters. The set of equations is solved numerically by implementing the spectral relaxation method (SRM). SRM is a numerical technique that uses the basic techniques of Gauss-Seidel. The SRM first decouples and linearizes the coupled nonlinear set of ODEs.

Findings

In this finding, it is found that the thermal radiation parameter produces higher temperatures within the BL to cause blockage in viral replications. It is found in this study that the magnetic parameter assisted in disinfection by lowering the antiviral and antibacterial mechanisms within the momentum BL. This is evident from the reduction in the velocity and momentum BL as the Casson and Walters-B parameters increase.

Originality/value

This paper is unique because it examined the antiviral and antibacterial mechanisms by using AgNPs. Prior to the authors’ understanding, no study of this type was conducted in the past. To the best of the authors’ knowledge, no other study in the past has examined the mechanisms of antiviral and antibacterial separately within the BL. Also, the simultaneous flow of Casson (honey) and Walters-B fluids were considered flowing through the vertical porous plate to the BL.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 23 November 2018

K. Ramesh and Sartaj Ahmad Eytoo

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and…

69

Abstract

Purpose

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and both the plates moving in the direction of flow) of the Ree-Eyring fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the intention of the study is to examine the effect of different physical parameters on the fluid flow.

Design/methodology/approach

The mathematical modeling is performed on the basis of law of conservation of mass, momentum and energy equation. The modeling of the present problem is considered in Cartesian coordinate system. The governing equations are non-dimensionalized using appropriate dimensionless quantities in all the mentioned cases. The closed-form solutions are presented for the velocity and temperature profiles.

Findings

The graphical results are presented for the velocity and temperature distributions with the pertinent parameters of interest. It is observed from the present results that the velocity is a decreasing function of Hartmann number. Temperature increases with the increase of Ree-Eyring fluid parameter, radiation parameter and temperature slip parameter.

Originality/value

First time in the literature, the authors obtained closed-form solutions for the fundamental flows of Ree-Erying fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the results of this paper are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 44
Per page
102050