Search results

1 – 10 of 111
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 February 1992

E.D. LYUMKIS, B.S. POLSKY, A.I. SHUR and P. VISOCKY

An efficient numerical method for the solution of hot‐carrier transport equations describing transient processes in submicrometer semiconductor devices is proposed. The…

178

Abstract

An efficient numerical method for the solution of hot‐carrier transport equations describing transient processes in submicrometer semiconductor devices is proposed. The calculations of transient processes in submicrometer MOS transistor were carried out and compared with the results obtained by conventional drift‐diffusion model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 2
Type: Research Article
ISSN: 0332-1649

Access Restricted. View access options
Article
Publication date: 5 March 2018

Hajar Eskandar, Elham Heydari, Mahdi Hasanipanah, Mehrshad Jalil Masir and Ali Mahmodi Derakhsh

Blasting is an economical method for rock breakage in open-pit mines. Backbreak is an undesirable phenomenon induced by blasting operations and has several unsuitable effects such…

175

Abstract

Purpose

Blasting is an economical method for rock breakage in open-pit mines. Backbreak is an undesirable phenomenon induced by blasting operations and has several unsuitable effects such as equipment instability and decreased performance of the blasting. Therefore, accurate estimation of backbreak is required for minimizing the environmental problems. The primary purpose of this paper is to propose a novel predictive model for estimating the backbreak at Shur River Dam region, Iran, using particle swarm optimization (PSO).

Design/methodology/approach

For this work, a total of 84 blasting events were considered and five effective factors on backbreak including spacing, burden, stemming, rock mass rating and specific charge were measured. To evaluate the accuracy of the proposed PSO model, multiple regression (MR) model was also developed, and the results of two predictive models were compared with actual field data.

Findings

Based on two statistical metrics [i.e. coefficient of determination (R2) and root mean square error (RMSE)], it was found that the proposed PSO model (with R2 = 0.960 and RMSE = 0.08) can predict backbreak better than MR (with R2 = 0.873 and RMSE = 0.14).

Originality/value

The analysis indicated that the specific charge is the most effective parameter on backbreak among all independent parameters used in this study.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 18 January 2019

Khosro Sayevand and Hossein Arab

The purpose of this paper is to propose a gauge for the convergence of the deterministic particle swarm optimization (PSO) algorithm to obtain an optimum upper bound for PSO…

153

Abstract

Purpose

The purpose of this paper is to propose a gauge for the convergence of the deterministic particle swarm optimization (PSO) algorithm to obtain an optimum upper bound for PSO algorithm and also developing a precise equation for predicting the rock fragmentation, as important aims in surface mines.

Design/methodology/approach

In this study, a database including 80 sets of data was collected from 80 blasting events in Shur river dam region, in Iran. The values of maximum charge per delay (W), burden (B), spacing (S), stemming (ST), powder factor (PF), rock mass rating (RMR) and D80, as a standard for evaluating the fragmentation, were measured. To check the performance of the proposed PSO models, artificial neural network was also developed. Accuracy of the developed models was evaluated using several statistical evaluation criteria, such as variance account for, R-square (R2) and root mean square error.

Findings

Finding the upper bounds for the difference between the position and the best position of particles in PSO algorithm and also developing a precise equation for predicting the rock fragmentation, as important aims in surface mines.

Originality/value

For the first time, the convergence of the deterministic PSO is studied in this study without using the stagnation or the weak chaotic assumption. The authors also studied application of PSO inpredicting rock fragmentation.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 11 July 2018

Katayoun Behzadafshar, Fahimeh Mohebbi, Mehran Soltani Tehrani, Mahdi Hasanipanah and Omid Tabrizi

The purpose of this paper is to propose three imperialist competitive algorithm (ICA)-based models for predicting the blast-induced ground vibrations in Shur River dam region…

153

Abstract

Purpose

The purpose of this paper is to propose three imperialist competitive algorithm (ICA)-based models for predicting the blast-induced ground vibrations in Shur River dam region, Iran.

Design/methodology/approach

For this aim, 76 data sets were used to establish the ICA-linear, ICA-power and ICA-quadratic models. For comparison aims, artificial neural network and empirical models were also developed. Burden to spacing ratio, distance between shot points and installed seismograph, stemming, powder factor and max charge per delay were used as the models’ input, and the peak particle velocity (PPV) parameter was used as the models’ output.

Findings

After modeling, the various statistical evaluation criteria such as coefficient of determination (R2) were applied to choose the most precise model in predicting the PPV. The results indicate the ICA-based models proposed in the present study were more acceptable and reliable than the artificial neural network and empirical models. Moreover, ICA linear model with the R2 of 0.939 was the most precise model for predicting the PPV in the present study.

Originality/value

In the present paper, the authors have proposed three novel prediction methods based on ICA to predict the PPV. In the next step, we compared the performance of the proposed ICA-based models with the artificial neural network and empirical models. The results indicated that the ICA-based models proposed in the present paper were superior in terms of high accuracy and have the capacity to generalize.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 1 March 1993

Allan Metz

On 1 April 1978, the Israeli peace movement burst into world consciousness when an estimated 25,000 Israelis demonstrated in Tel Aviv to urge the administration of Prime Minister…

122

Abstract

On 1 April 1978, the Israeli peace movement burst into world consciousness when an estimated 25,000 Israelis demonstrated in Tel Aviv to urge the administration of Prime Minister Menachem Begin to continue peace negotiations with Egypt. A grassroots group called Peace Now is credited with organizing and leading that demonstration. Today, the “peace camp” refers to left‐wing political parties and organizations that hold dovish positions on the Arab‐Israeli conflict and the Palestinian issue. While some figures in the Labor Party view themselves as the peace movement's natural leader, political parties further to the left like the Citizens Rights Movement (CRM) and Mapam are more dovish. In the last 10 years, many grassroots peace organizations have, like Peace Now, formed outside the political party system, with the goal of influencing public opinion and eventually having an impact on policy makers. Peace Now is still the largest, most visible and influential of those organizations.

Details

Reference Services Review, vol. 21 no. 3
Type: Research Article
ISSN: 0090-7324

Access Restricted. View access options
Article
Publication date: 6 November 2017

Liang Wang, Liying Li and Song Fu

The purpose of this paper is to numerically investigate the mildly separated flow phenomena on a near-stall NACA0015 airfoil, by using Detached-Eddy Simulation (DES) type methods…

282

Abstract

Purpose

The purpose of this paper is to numerically investigate the mildly separated flow phenomena on a near-stall NACA0015 airfoil, by using Detached-Eddy Simulation (DES) type methods. It includes a comparison of different choices of underlying Reynolds-averaged Navier–Stokes model as well as subgrid-scale stress model in Large-Eddy simulation mode.

Design/methodology/approach

The unsteady flow phenomena are simulated by using delayed DES (DDES) and improved DDES (IDDES) methods, with an in-house computational fluid dynamics solver. Characteristic frequencies in different flow regions are extracted using fast Fourier transform. Dynamic mode decomposition (DMD) method is applied to uncover the critical dynamic modes.

Findings

Among all the DES type methods investigated in this paper, only the Spalart–Allmaras-based IDDES captures the separation point as measured in the experiments. The classical vortex-shedding and the shear-layer flapping modes for airfoil flows with shallow separation are also found from the IDDES results by using DMD.

Originality/value

The value of this paper lies in the assessment of five different DES-type models through the detailed investigation of the Reynolds stresses as well as the separation and reattachment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 30 January 2023

Kaiwen Pang, Xianbei Huang, Zhuqing Liu, Yaojun Li, Wei Yang and Jiaxing Lu

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

75

Abstract

Purpose

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Design/methodology/approach

The kω and Shear-Stress Transport (SST) kω models are modified by using the complete eddy viscosity coefficient expression, and the latter is modified by using two sets of model coefficients. The two bifurcation models were tested in three cases: rotating channel flow with system rotation, Taylor–Couette flow with wall rotation and curvature effect and swirling flow through an abrupt axisymmetric expansion with inlet swirling flow.

Findings

In these flows, the bifurcation approach can significantly improve the prediction performance of the base model in the fluctuation velocity. The deviation of the BSkO model is slightly superior to the BkO model by about 2% in the Taylor–Couette flow. The prediction effect of the root-mean-square (RMS) velocity of the BSkO model increases by about 4–5% as the number of grids increases about 2.37 times, and the best is the Large Eddy Simulation (LES) grid used. Finally, compared with the SST kω model, the average iteration time of the SST with curvature correction (SST-CC), bifurcation kω (BkO) and bifurcation SST kω (BSkO) models increased by 27.7%, 86.9% and 62.3%, respectively.

Originality/value

This study is helpful to understand further the application of the bifurcation method in the turbulence model.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 11 October 2021

Axel Probst and Stefan Melber-Wilkending

The paper aims to assess the feasibility of locally turbulence-resolving flow simulations for a high-lift aircraft configuration near maximum lift. It addresses the aspects of…

115

Abstract

Purpose

The paper aims to assess the feasibility of locally turbulence-resolving flow simulations for a high-lift aircraft configuration near maximum lift. It addresses the aspects of proper grid design and explores the ability of the hybrid turbulence model and the numerical scheme to automatically select adequate modes in different flow regions. By comparison with experimental and numerical reference data, the study aims to provide insights into the predictive potential of the method for high-lift flows.

Design/methodology/approach

The paper applies numerical flow simulations using well-established tools such as DLR's (German Aerospace Center) TAU solver and the SOLAR grid generator to study “Improved Detached Delayed Eddy Simulations” of the Japan Aerospace Exploration Agency (JAXA) Standard Model at two angles of attack near maximum lift. The simulations apply a hybrid low-dissipation low-dispersion scheme and implicit time stepping with adequate temporal resolution. The simulation results, including pressure distributions and near-wall flow patterns, are assessed by comparison with experimental wind-tunnel data.

Findings

Apart from demonstrating the general feasibility of the numerical approach for complex high-lift flows, the results indicate somewhat improved maximum lift predictions compared to the Spalart–Allmaras model, which is consistent with a slightly closer agreement with measured pressure distributions and oil-flow pictures. However, the expected lift breakdown caused by an increasing inboard separation in the experiment is not well captured.

Originality/value

The study not only provides new insight into the feasibility and promising potential of hybrid turbulence-resolving methods for relevant high-lift aircraft flows but also indicates the need for further research on the numerical sensitivities, such as grid resolution or flow initialization.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 February 1982

R.K. COOK and Jeffrey FREY

A transport model has been developed which is reasonably accurate, and has proven quite efficient for the two‐dimensional numerical simulation of submicron‐scale Si and GaAs…

165

Abstract

A transport model has been developed which is reasonably accurate, and has proven quite efficient for the two‐dimensional numerical simulation of submicron‐scale Si and GaAs devices. In this model an approximate form of the energy‐transport equation is developed; this equation is easily included in otherwise‐conventional device simulation codes, which then require only slightly more solution time than standard models using field‐dependent transport coefficients. Calculations for 0.25 micron gate length Si and GaAs MESFET's show that velocity overshoot effects can be very important, particularly in the latter material; predicted saturation currents in the GaAs devices are almost three times larger than those that would have been predicted using conventional transport models. The model described, and its application in simulation programs, should find use in the design of submicron‐scale devices to properly take advantage of overshoot phenomena.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 1 no. 2
Type: Research Article
ISSN: 0332-1649

Access Restricted. View access options
Article
Publication date: 12 June 2009

William D. York, D. Keith Walters and James H. Leylek

The purpose of this paper is to present a new eddy‐viscosity formulation designed to exhibit a correct response to streamline curvature and flow rotation. The formulation is…

789

Abstract

Purpose

The purpose of this paper is to present a new eddy‐viscosity formulation designed to exhibit a correct response to streamline curvature and flow rotation. The formulation is implemented into a linear k‐ ε turbulence model with a two‐layer near‐wall treatment in a commercial computational fluid dynamics (CFD) solver.

Design/methodology/approach

A simple, robust formula is developed for the eddy‐viscosity that is curvature/rotation sensitive and also satisfies realizability and invariance principles. The new model is tested on several two‐ and three‐dimensional problems, including rotating channel flow, U‐bend flow and internally cooled turbine airfoil conjugate heat transfer. Predictions are compared to those with popular eddy‐viscosity models.

Findings

Converged solutions to a variety of turbulent flow problems are obtained with no additional computational expense over existing two‐equation models. In all cases, results with the new model are superior to two other popular k‐ ε model variants, especially for regions in which rapid rotation or strong streamline curvature exists.

Research limitations/implications

The approach adopted here for linear eddy‐viscosity models may be extended in a straightforward manner to non‐linear eddy‐viscosity or explicit algebraic stress models.

Practical implications

The new model is a simple “plug‐in” formula that contains important physics not included in most linear eddy‐viscosity models and is easy to implement in most flow solvers.

Originality/value

The present model for curved and rotating flows is developed without the need for second derivatives of velocity in the formulation, which are known to present difficulties with unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 111
Per page
102050