Search results

1 – 10 of 55
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 June 2010

A. Mavrogianni, M. Davies, P. Wilkinson and A. Pathan

Climate change presents potential increased threats to the comfort and health of urban populations as a result of higher summer temperatures. This paper reviews recent research on…

169

Abstract

Climate change presents potential increased threats to the comfort and health of urban populations as a result of higher summer temperatures. This paper reviews recent research on the climate change adaptation potential of urban environments and focuses on a major conurbation, London. Recent work relating to the impact of exposure to heat on population health is also noted. Data obtained from a pilot monitoring study carried out in a subset of 36 dwellings (from a total of 110 dwellings in the overall study) across London during the summer of 2009 is then discussed. Preliminary results illustrate the need to quantify the net impacts of individual building characteristics and the location of each dwelling within the London heat island. During a hot period, more than 40% of the monitored bedrooms failed the recommended overheating criteria during the night time. There was some indication of purpose built flats being more prone to overheating. The potential use of such data as the basis of a heat-related health risk epidemiological model for London is discussed. Such a tool would help health policy makers to target the most vulnerable building types and areas.

Details

Open House International, vol. 35 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

Access Restricted. View access options
Article
Publication date: 1 November 2024

Fuad Baba, Jihad Awad, Yazan Elkahlout and Mohammed Sherzad

This paper aims to compare the impacts of adaptive daily and seasonal cooling setpoints on cooling energy consumption and overheating hours to determine which approach is more…

25

Abstract

Purpose

This paper aims to compare the impacts of adaptive daily and seasonal cooling setpoints on cooling energy consumption and overheating hours to determine which approach is more effective in a desert climate, develop a methodology that effectively integrates passive strategies with adaptive daily and seasonal cooling setpoint strategies and assess how future climate conditions will impact these strategies in the medium and long term.

Design/methodology/approach

(1) Integrate adaptive thermal comfort principles into mechanical cooling systems to find the optimized cooling setpoint. (2) Evaluating the optimized cooling setpoints using a mixed-mode operation: In this step, the natural ventilation is activated by opening 40% of the window area when the indoor temperature is higher than 23°C and the outdoor temperature. Both the adaptive seasonal and daily setpoint strategies are evaluated. (3) If overheating hours exceed acceptable limits gradually add mitigation measures (e.g. exterior shading, cool roofs and green roofs). (4) If necessary, further reduce the cooling setpoint until acceptable limits are met. (5) Generate extreme future climate scenarios and evaluate the optimized model. (6) Implement additional measures and setpoint adjustments to maintain acceptable overheating hours in future conditions.

Findings

Although the building complies with the Dubai Green Code and uses external shading, its cooling energy consumption was 92 kWh/m² in 2021 with a 24°C setpoint. Using the adaptive seasonal setpoint combined with a cool roof, night cooling and cross-ventilation reduces cooling energy consumption by 52, 48 and 35% in 2020, 2050 and 2090, respectively, with overheating hours not exceeding 40 h annually. Using an adaptive daily setpoint strategy with the same mitigation measures is similarly effective; it achieved a 57, 42 and 34% reduction in cooling energy consumption in 2020, 2050 and 2090, respectively, while eliminating overheating hours.

Originality/value

The originality and value of this study lie in optimizing cooling setpoints without the effect of overheating hours in desert climates. Using the adaptive seasonal setpoint combined with a cool roof, night cooling and cross-ventilation reduces cooling energy consumption by 52, 48 and 35% in 2020, 2050 and 2090, respectively, with overheating hours not exceeding 40 h annually. Using an adaptive daily setpoint strategy with the same mitigation measures is similarly effective; it achieved a 57, 42 and 34% reduction in cooling energy consumption in 2020, 2050 and 2090, respectively, while eliminating overheating hours.

Highlights

  • (1)

    A methodology is developed to find the optimal cooling setpoints

  • (2)

    Adaptive thermal comfort concept is extended for integration with a cooling system

  • (3)

    Validation simulation model is used using certain building information

  • (4)

    Climate change effect is studied using current and future warmer typical years

  • (5)

    Effective passive summer mitigation measures are studied

A methodology is developed to find the optimal cooling setpoints

Adaptive thermal comfort concept is extended for integration with a cooling system

Validation simulation model is used using certain building information

Climate change effect is studied using current and future warmer typical years

Effective passive summer mitigation measures are studied

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Access Restricted. View access options
Article
Publication date: 14 August 2017

Andrea Botti and Marylis Ramos

In the light of projected climate change impacts on buildings and their occupants, climate change adaptation for built environment to climate change is crucial. The risk of…

350

Abstract

Purpose

In the light of projected climate change impacts on buildings and their occupants, climate change adaptation for built environment to climate change is crucial. The risk of overheating is a key concern, particularly given its effect on heat-related health problems for elderly people. The purpose of this paper is to propose, test, and evaluate the strategies for climate change adaptation to minimise present and future risks of overheating for a new purpose-built care home and extra care accommodation near York.

Design/methodology/approach

The overheating risk was assessed through dynamic simulations, using probabilistic projections for 2030s, 2050s and 2080s. Suitable adaptation measures were tested and compared using industry metrics. A stakeholders’ workshop compared the relative effectiveness of the identified measures and made a broader evaluation using defined criteria. Highest-ranked measures were combined into “adaptation packages” in order to populate adaptation timelines for the project.

Findings

Results show that the original design presents a severe overheating risk. Increasing thermal mass and slightly improving ventilation are adequate for the 2030s; however solar shading and further improvements of ventilation are necessary for the 2050s. The stress test revealed that even the most effective passive measures combined would be insufficient to maintain comfortable conditions by the 2080s, and mechanical cooling would be needed.

Originality/value

The comparative analysis of adaptation measures using normalised CIBSE TM52 criteria improved risk communication and engagement with the client and the design team. The integration of quantitative and qualitative evaluation criteria led to an appropriate and timely strategy for adaptation.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Access Restricted. View access options
Article
Publication date: 21 November 2016

Ricardo Barbosa, Romeu Vicente and Rui Santos

This paper aims to investigate vulnerability factors that influence thermal comfort in residential buildings in the context of climate change and variability, as well as adaptive…

553

Abstract

Purpose

This paper aims to investigate vulnerability factors that influence thermal comfort in residential buildings in the context of climate change and variability, as well as adaptive strategies that can be adopted. There is a need for research that systematically addresses factors influencing thermal comfort in the context of climate change.

Design/methodology/approach

Using a vulnerability framework, this paper reviews existing literature to identify factors driving impacts to comfort, as well as strategies to increase adaptive capacity in buildings. Data were collected from several sources including international organizations, scientific journals and government authorities, following an initial Web-based subject search using Boolean operators.

Findings

Significant impacts can be expected in terms of thermal comfort inside buildings depending on four vulnerability factors: location; age and form; construction fabric and occupancy and behaviour. Despite the fact that the majority of the existing studies are technically driven and spatially restricted, there is strong evidence of interdependencies of scales in managing vulnerability and adaptive capacity.

Practical implications

Results from this review emphasise the importance of balance mitigation with adaptation regarding new building design and when retrofitting old buildings. The factors identified here can also be used to assist in construction of simplified tools such as a vulnerability index that helps in identifying the most vulnerable buildings and dwellings and assist in retrofit decisions.

Originality/value

The paper offers critical insight regarding implications in building design and policy in a vulnerability framework.

Details

International Journal of Climate Change Strategies and Management, vol. 8 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Access Restricted. View access options
Article
Publication date: 12 January 2021

Christian Koranteng, Barbara Simons and Frederick Wireko Manu

Many countries the world over continue to grapple with issues of thermal discomfort both within and without – a condition that has arisen due to incessant urbanization, climate…

317

Abstract

Purpose

Many countries the world over continue to grapple with issues of thermal discomfort both within and without – a condition that has arisen due to incessant urbanization, climate change, among others. The current study focussed on assessing the level of thermal stress both in and outdoors towards finding measures to reduce overheating in spaces within the Savannah climatic region of Ghana through a four-stage approach.

Design/methodology/approach

A four-stage approach has been used for the study; thus, a thermal comfort analysis based on physiologically equivalent temperature (PET), overheating assessment, a subjective thermal responses/evaluation of residents and a simulation effort to improve comfort.

Findings

There was an indication of “moderate cold stress to slight cold stress” on the coolest day (28th December). On the warmest day (12th April), however, the indoor environment had exceedance and severity of overheating of at least 56% and 38-degree hours. The acceptable comfort range and comfort temperatures of occupants of buildings in the study area have been determined to be 25.5–33 °C by the thermal sensation survey. Meanwhile, the simulation showed that a 200% increase in thermal mass, exterior wall insulation and roof extension and insulation has the potential to generate a reduction of 18% in overheated hours.

Originality/value

The paper unearths the flagrant disregard for thermal comfort in an attempt of “copying blindly” architecture from Southern Ghana by the affluent within the Savannah Region. Again, data provided prove that indeed human activities have worsened the plight of inhabitants through materials as well as construction methods.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2023

Awes Asghar, Ruba Asif, Naeem Akhtar and Tahir Islam

Hotel servicescapes have been extensively examined in the literature; however, there has been less attention on green servicescapes that attract consumers to visit green hotels…

341

Abstract

Purpose

Hotel servicescapes have been extensively examined in the literature; however, there has been less attention on green servicescapes that attract consumers to visit green hotels. This model explores the relationship among green servicescapes – green items, green surfaces, natural environment, green consumerism and their outcomes, including intentions to return and green evangelism with a moderating role of green perceived quality.

Design/methodology/approach

The multi-wave method was utilized to gather data from China's major cities, Beijing and Shanghai. A total of 462 responses were received over three waves. Subsequently, the data were analyzed employing structural equation modeling (SEM) in Smart PLS 4.

Findings

The findings indicated that green servicescape – green items, green surfaces and natural environment – have a positive impact on green consumerism. The authors have discovered that green consumerism leads to positive intentions among consumers to return and engage in green evangelism. Green perceived quality significantly moderated the relationship between green servicescape and green consumerism.

Research limitations/implications

The study offers insightful contributions to academia and managerial fields, encompassing consumer psychology, consumer behaviour, the stimulus-organism-response (SOR) framework and servicescapes. Additionally, it assists hotel managers in addressing challenges stemming from the competitive environment and creating a more environmentally friendly atmosphere.

Originality/value

The research focused on the innovative reflective model of green consumerism model and adopted a pioneering approach to examine green servicescapes within the hotel industry. This study enhances understanding of consumer intentions to return and the influence of green consumerism on green evangelism, while also quantifying the significance of green perceived quality.

Details

Journal of Hospitality and Tourism Insights, vol. 7 no. 5
Type: Research Article
ISSN: 2514-9792

Keywords

Access Restricted. View access options
Article
Publication date: 16 February 2022

Thanos N. Stasinopoulos

The objective is to provide a quantitative insight on the dynamic nature of insolation on the building perimeter according to location, season and orientation. Such understanding…

173

Abstract

Purpose

The objective is to provide a quantitative insight on the dynamic nature of insolation on the building perimeter according to location, season and orientation. Such understanding is necessary for deciding on solar control strategies in diverse climatic environments, from low to high availability of insolation.

Design/methodology/approach

This study explores the seasonal changes of solar irradiation on building façades of various orientations at five locations with diverse climates (Reykjavík, London, Athens, Riyadh, Lagos). Solar data collected from the European PVGIS database is used to study the monthly distribution of global solar radiation incident on building façades at cardinal and ordinal orientations, as well as the proportions of its components.

Findings

The results illuminate the effects of the various factors on insolation. Among others: In all locations, horizontal surfaces receive more annual irradiation than any façade. In summer, east/west facades receive more radiation than south, hence solar protection on those directions is more important than on south. The beam fraction varies seasonally on south and north facades, but not so on east/west. Local atmospheric conditions can offset the importance of latitude on insolation levels and composition.

Originality/value

The paper utilises commonly available data to correlate insolation values and types under different factors across the globe, offering a better understanding on insolation for the design of greener buildings.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Available. Open Access. Open Access
Article
Publication date: 28 October 2021

Ben M. Roberts, David Allinson and Kevin J. Lomas

Accurate values for infiltration rate are important to reliably estimate heat losses from buildings. Infiltration rate is rarely measured directly, and instead is usually…

2535

Abstract

Purpose

Accurate values for infiltration rate are important to reliably estimate heat losses from buildings. Infiltration rate is rarely measured directly, and instead is usually estimated using algorithms or data from fan pressurisation tests. However, there is growing evidence that the commonly used methods for estimating infiltration rate are inaccurate in UK dwellings. Furthermore, most prior research was conducted during the winter season or relies on single measurements in each dwelling. Infiltration rates also affect the likelihood and severity of summertime overheating. The purpose of this work is to measure infiltration rates in summer, to compare this to different infiltration estimation methods, and to quantify the differences.

Design/methodology/approach

Fifteen whole house tracer gas tests were undertaken in the same test house during spring and summer to measure the whole building infiltration rate. Eleven infiltration estimation methods were used to predict infiltration rate, and these were compared to the measured values. Most, but not all, infiltration estimation methods relied on data from fan pressurisation (blower door) tests. A further four tracer gas tests were also done with trickle vents open to allow for comment on indoor air quality, but not compared to infiltration estimation methods.

Findings

The eleven estimation methods predicted infiltration rates between 64 and 208% higher than measured. The ASHRAE Enhanced derived infiltration rate (0.41 ach) was closest to the measured value of 0.25 ach, but still significantly different. The infiltration rate predicted by the “divide-by-20” rule of thumb, which is commonly used in the UK, was second furthest from the measured value at 0.73 ach. Indoor air quality is likely to be unsatisfactory in summer when windows are closed, even if trickle vents are open.

Practical implications

The findings have implications for those using dynamic thermal modelling to predict summertime overheating who, in the absence of a directly measured value for infiltration rate (i.e. by tracer gas), currently commonly use infiltration estimation methods such as the “divide-by-20” rule. Therefore, infiltration may be overestimated resulting in overheating risk and indoor air quality being incorrectly predicted.

Originality/value

Direct measurement of air infiltration rate is rare, especially multiple tests in a single home. Past measurements have invariably focused on the winter heating season. This work is original in that the tracer gas technique used to measure infiltration rate many times in a single dwelling during the summer. This work is also original in that it quantifies both the infiltration rate and its variability, and compares these to values produced by eleven infiltration estimation methods.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2012

Fuad H. Mallick and Monjur Mourshed

The interdependence and feedback between climate impacts mitigation and adaptation to the inevitable changes in climate are the key challenges for the built environment in the…

28

Abstract

The interdependence and feedback between climate impacts mitigation and adaptation to the inevitable changes in climate are the key challenges for the built environment in the coming decades. These challenges are more pronounced in the interface between science and society, in which scientific knowledge and evidence are transformed into policy actions. This editorial looks at current and growing evidence base on the impacts of climate change and the means to adapt buildings, as well as the interface between policies and evidence base while summarising the contributions to this special issue.

Details

Open House International, vol. 37 no. 4
Type: Research Article
ISSN: 0168-2601

Access Restricted. View access options
Article
Publication date: 23 August 2013

P.F.G. Banfill, D.P. Jenkins, S. Patidar, M. Gul, G.F. Menzies and G.J. Gibson

The work set out to design and develop an overheating risk tool using the UKCP09 climate projections that is compatible with building performance simulation software. The aim of…

369

Abstract

Purpose

The work set out to design and develop an overheating risk tool using the UKCP09 climate projections that is compatible with building performance simulation software. The aim of the tool is to exploit the Weather Generator and give a reasonably accurate assessment of a building's performance in future climates, without adding significant time, cost or complexity to the design team's work.

Methodology/approach

Because simulating every possible future climate is impracticable, the approach adopted was to use principal component analysis to give a statistically rigorous simplification of the climate projections. The perceptions and requirements of potential users were assessed through surveys, interviews and focus groups.

Findings

It is possible to convert a single dynamic simulation output into many hundreds of simulation results at hourly resolution for equally probable climates, giving a population of outcomes for the performance of a specific building in a future climate, thus helping the user choose adaptations that might reduce the risk of overheating. The tool outputs can be delivered as a probabilistic overheating curve and feed into a risk management matrix. Professionals recognized the need to quantify overheating risk, particularly for non‐domestic buildings, and were concerned about the ease of incorporating the UKCP09 projections into this process. The new tool has the potential to meet these concerns.

Originality/value

The paper is the first attempt to link UKCP09 climate projections and building performance simulation software in this way and the work offers the potential for design practitioners to use the tool to quickly assess the risk of overheating in their designs and adapt them accordingly.

Details

Structural Survey, vol. 31 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of 55
Per page
102050