Search results
1 – 10 of 17A. Malleswaran, S. Sivasankaran and M. Bhuvaneswari
The main objective of the present study is to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid‐driven cavity.
Abstract
Purpose
The main objective of the present study is to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid‐driven cavity.
Design/methodology/approach
The non‐dimensional equations are discretized by the finite‐volume method. The upwind scheme and the central difference scheme are implemented for the convection and the diffusion terms, respectively.
Findings
On increasing the Richardson number, the overall heat transfer is increased whether the length and the location of the heater is considered or not. Among the various lengths of the heater considered, the total heat transfer is better only for the length LH=1/3 of the heater if it is extended from top or bottom of the cavity. In the case of location of the heater, the average heat transfer enhances for center location of the heater. Existence of the magnetic field suppresses the convective heat transfer and the fluid flow.
Practical implications
The results can be used in the cooling of electronic devices and heat transfer improvement in heat exchangers.
Originality/value
The numerical results obtained here focus on the detailed investigation of flow and temperature field in a discretely heated lid‐driven square cavity. The findings will be helpful in many applications such as heat exchangers and cooling of electronic devices.
Details
Keywords
The purpose of this paper is to determine the overall free convective heat transfer coefficient for an assembly constituted by a Quad Flat Non-lead QFN16 welded on a Printed…
Abstract
Purpose
The purpose of this paper is to determine the overall free convective heat transfer coefficient for an assembly constituted by a Quad Flat Non-lead QFN16 welded on a Printed Circuit Board (PCB) which may be inclined with respect to the horizontal plane by an angle varying between 0° and 90° corresponding to the horizontal and vertical position, respectively. This electronic device widely used in electronics generates during its effective operation a power ranging from 0.1 to 0.8 W. The assembly is installed in an air-filled cavity.
Design/methodology/approach
Calculations are done by means of the finite volume method for many configurations obtained by varying the generated power, the inclination angle and the position of the QFN16 on the PCB. The dynamic and thermal aspects are presented and commented.
Findings
The study shows that the thermal state of the electronic device is influenced by the previous three physical parameters. A correlation between the global convective exchange coefficient, the generated power and the PCB inclination angle is proposed in this survey.
Practical implications
The results of this survey allow a better thermal control of this conventional arrangement widely used in electronic applications.
Originality/value
The correlations proposed in this work are original and unpublished. The considered power varies between 0.1 and 0.8W corresponding to the effective operation of the device, associated to a PCB inclination angle ranging between 0° and 90°.
Details
Keywords
Huey Tyng Cheong, S. Sivasankaran and M. Bhuvaneswari
The purpose of this paper is to study natural convective flow and heat transfer in a sinusoidally heated wavy porous cavity in the presence of internal heat generation or…
Abstract
Purpose
The purpose of this paper is to study natural convective flow and heat transfer in a sinusoidally heated wavy porous cavity in the presence of internal heat generation or absorption.
Design/methodology/approach
Sinusoidal heating is applied on the vertical left wall of the cavity, whereas the wavy right wall is cooled at a constant temperature. The top and bottom walls are taken to be adiabatic. The Darcy model is adopted for fluid flow through the porous medium in the cavity. The governing equations and boundary conditions are solved using the finite difference method over a range of amplitudes and number of undulations of the wavy wall, Darcy–Rayleigh numbers and internal heat generation/absorption parameters.
Findings
The results are presented in the form of streamlines, isotherms and Nusselt numbers for different values of right wall waviness, Darcy–Rayleigh number and internal heat generation parameter. The flow field and temperature distribution in the cavity are affected by the waviness of the right wall. The wavy nature of the cavity also enhances the heat transfer into the system. The heat transfer rate in the cavity decreases with an increase in the internal heat generation/absorption parameter.
Research limitations/implications
The present investigation is conducted for steady, two-dimensional natural convective flow in a wavy cavity filled with Darcy porous medium. The waviness of the right wall is described by the amplitude and number of undulations with a well-defined mathematical function. An extension of the present study with the effects of cavity inclination and aspect ratio will be the interest for future work.
Practical implications
The study might be useful for the design of solar collectors, room ventilation systems and electronic cooling systems.
Originality/value
This work examines the effects of sinusoidal heating on convective heat transfer in a wavy porous cavity in the presence of internal heat generation or absorption. The study might be useful for the design of solar collectors, room ventilation systems and electronic cooling systems.
Details
Keywords
Abderrahmane Baïri, Nacim Alilat, Ali Hocine, Abderrezak Hamouda and Oriana Haddad
The wire-bonded version of the quad flat non-lead with 64 leads (QFN64b) is increasingly integrated in modern arrangements, given its thermal and electrical characteristics suited…
Abstract
Purpose
The wire-bonded version of the quad flat non-lead with 64 leads (QFN64b) is increasingly integrated in modern arrangements, given its thermal and electrical characteristics suited for specific applications. Temperature control is thus essential for its proper operation, particularly when the heat exchange with the environment is done by natural convection. This work aims to consider a conventional assembly consisting of a large printed circuit board (PCB) on which is welded a QFN64b generating a power in the range 0.01-0.1 W. The PCB could be inclined at an angle varying between 0° and 90° (horizontal and vertical positions, respectively) according to the intended application.
Design/methodology/approach
The 3D numerical approach done by means of the finite volume method is complemented by thermal and electrical measurements for all the configurations numerically processed. The low deviations obtained between the calculations and the measurements validate the adopted model. These results complement recent work that considers the same assembly equipped with a tilted and low-powered QFN64 basic model subjected to free convection.
Findings
The surface temperature in any part of the assembly has been determined. The influence of the power generated by the device and the PCB’s inclination angle relative to the gravity field have been quantified. The work shows that the radiative heat transfer is negligible given the temperatures reached and that the thermal state of the considered assembly is different from the one equipped with the QFN64 basic model. The QFN’s temperature is lowered, while that of the PCB is increased. The temperature distribution is also different from that of assemblies equipped with other QFN models with and without wire-bonding.
Originality/value
The correlations proposed in this survey help optimize the thermal design of the QFN64b electronic package used in many engineering fields.
Details
Keywords
The purpose of this paper is to investigate a model for convection induced by the selective absorption of radiation in a fluid layer. The concentration based internal heat source…
Abstract
Purpose
The purpose of this paper is to investigate a model for convection induced by the selective absorption of radiation in a fluid layer. The concentration based internal heat source is modelled quadratically. Both linear instability and global nonlinear energy stability analyses are tested using three dimensional simulations. The results show that the linear threshold accurately predicts on the onset of instability in the basic steady state. However, the required time to arrive at the steady state increases significantly as the Rayleigh number tends to the linear threshold.
Design/methodology/approach
The author introduce the stability analysis of the problem of convection induced by absorption of radiation in fluid layer, then the author select a situations which have very big subcritical region. Then, the author develop a three dimensions simulation for the problem. To do this, first, the author transform the problem to velocity – vorticity formulation, then the author use a second order finite difference schemes. The author use implicit and explicit schemes to enforce the free divergence equation. The size of the Box is evaluated according to the normal modes representation. Moreover, the author adopt the periodic boundary conditions for velocity and temperature in the $x, y$ dimensions.
Findings
This paper explores a model for convection induced by the selective absorption of radiation in a fluid layer. The results demonstrate that the linear instability thresholds accurately predict the onset of instability. A three-dimensional numerical approach is adopted.
Originality/value
As the author believe, this paper is one of the first studies which deal with study of stability of convection using a three dimensional simulation. When the difference between the linear and nonlinear thresholds is very large, the comparison between these thresholds is very interesting and useful.
Details
Keywords
Mubbashar Nazeer, N. Ali and T. Javed
The main purpose of this study is to examine the effects of moving wall on the mixed convection flow and heat transfer in a right-angle triangular cavity filled with a micropolar…
Abstract
Purpose
The main purpose of this study is to examine the effects of moving wall on the mixed convection flow and heat transfer in a right-angle triangular cavity filled with a micropolar fluid.
Design/methodology/approach
It is assumed that the bottom wall is uniformly heated and the right inclined wall is cold, whereas the vertical wall is adiabatic and moving with upward/downward velocity v0/−v0, respectively. The micropolar fluid is considered to satisfy the Boussinesq approximation. The governing equations and boundary conditions are solved using the Galerkin finite element method. The Penalty method is used to eliminate the pressure term from the momentum equations. To accomplish the consistent solution, the value of the penalty parameter is taken 107. The simulations are performed for a wide range of Richardson number, micropolar parameter, Prandtl number and Reynolds number.
Findings
The results are presented in the form of streamlines, isotherms and variations of average Nusselt number and fluid flow rate depending on the Richardson number, Prandtl number, micropolar parameter and direction of the moving wall. The flow field and temperature distribution in the cavity are affected by these parameters. An average Nusselt number into the cavity in both cases increase with increasing Prandtl and Richardson numbers and decreases with increasing micropolar parameter, and it has a maximum value when the lid is moving in the downward direction for all the physical parameters.
Research limitations/implications
The present investigation is conducted for the steady, two-dimensional mixed convective flow in a right-angle triangular cavity filled with micropolar fluid. An extension of the present study with the effects of cavity inclination, square cavity, rectangular, trapezoidal and wavy cavity will be the interest of future work.
Originality/value
This work studies the effects of moving wall, micropolar parameter, Richardson number, Prandtl number and Reynolds number parameter in a right-angle triangular cavity filled with a micropolar fluid on the fluid flow and heat transfer. This study might be useful to flows of biological fluids in thin vessels, polymeric suspensions, liquid crystals, slurries, colloidal suspensions, exotic lubricants, solar engineering for construction of triangular solar collector, construction of thermal insulation structure and geophysical fluid mechanics, etc.
Details
Keywords
Sivasankaran Sivanandam and Bhuvaneswari Marimuthu
The numerical analysis is to scrutinize the collective effect of convective current along with the thermal energy transport in an inclined lid-driven square chamber with sine…
Abstract
Purpose
The numerical analysis is to scrutinize the collective effect of convective current along with the thermal energy transport in an inclined lid-driven square chamber with sine curve based temperature at the lower wall in the existence of unchanging external magnetic field. Insulation has been placed on the left and right of the box to increase the effective space volume of the shell. The thermal condition at ceiling wall is kept lower than the one on the floor.
Design/methodology/approach
The finite volume method employs to discretize (non-dimensional) system of equations govern the model. The heat transfer rate is measured by adjusting various variables, such as the Richardson number Hartmann number, inclination of an enclosure.
Findings
The flow behavior of enclosure convection is more highly influenced within the natural convection when enclosure inclination varies as well as magnetic field strength. The overall heat transfer rate decreases due to increase in both the Hartmann number as well as Richardson number.
Practical implications
The results of the present study are very useful to the cooling of electronic equipments.
Social implications
The study model is useful to the thermal science community and modelling field.
Originality/value
This research is a novel work on mixed convection flow in an inclined chamber with sinusoidal heat source.
Details
Keywords
K. Janagi, S. Sivasankaran, M. Bhuvaneswari and M. Eswaramurthi
The aim of the present study is to analyze the natural convection flow and heat transfer of cold water around °C in a square porous cavity. The horizontal walls of cavity are…
Abstract
Purpose
The aim of the present study is to analyze the natural convection flow and heat transfer of cold water around °C in a square porous cavity. The horizontal walls of cavity are adiabatic, and the vertical walls are maintained at different temperatures. The right side wall is maintained at temperature θc, and the left side wall is maintained at sinusoidal temperature distribution.
Design/methodology/approach
The Brinkman–Forchheimer-extended Darcy model for porous medium is used to study the effects of density inversion parameter, Rayleigh number and impact of Darcy number and porosity. The finite volume method is used to solve the governing equations.
Findings
The heat transfer rate is increased on increasing the Darcy number and porosity. Also, the convective heat transfer rate is decreased first and then increased on increasing the density inversion parameter.
Research limitations/implications
The numerical computations have been carried out for the Darcy number ranging of 10(−4) ≤ Da ≤ 10(−1), the porosity ranging of 0.4 ≤ ε ≤ 0.8 and the density inversion parameter ranging of 0 ≤ Tm ≤ 1 and keeping Ra = 106.
Practical implications
The results can be used in the cooling of electronic components, thermal storage system and in heat exchangers.
Originality/value
The choice of consideration of sinusoidal heating and density maximum effect produces good result in flow field and temperature distribution. The obtained results can be used in various fields.
Details
Keywords
Ali S. Alshomrani, S. Sivasankaran and Amer Abdulfattah Ahmed
This study aims to deal the numerical simulation on buoyant convection and energy transport in an inclined cubic box with diverse locations of the heater and coolers.
Abstract
Purpose
This study aims to deal the numerical simulation on buoyant convection and energy transport in an inclined cubic box with diverse locations of the heater and coolers.
Design/methodology/approach
The left/right walls are cooled partially whereas the other walls are kept adiabatic. In the left/right walls, three different locations of the cooler are examined, whereas heater moves in three locations in the middle of the enclosed box. The governing models are numerically solved using the finite-element method.
Findings
The simulations are done on several values of the Rayleigh number and cavity inclination angles and different locations of the heater and coolers. The results are presented in the form of streamlines, isosurfaces and Nusselt numbers for different values of parameter involved here. It is recognized that the inclination of the box and the locations of the coolers strongly influence the stream and energy transport inside the enclosed domain.
Research limitations/implications
The present investigation is conducted for steady, laminar, three-dimensional natural convective flow in a box for different locations of cooler and tilting angles of a cavity. The study might be useful to the design of solar collectors, room ventilation systems and electronic cooling systems.
Originality/value
This work examines the effects of different locations of cooler and tilting angles of a cavity on convective heat transfer in a 3D cavity. The study is useful for thermal engineering applications.
Details
Keywords
Davood Toghraie and Ehsan Shirani
The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field.
Abstract
Purpose
The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field.
Design/methodology/approach
The upper wall of the cavity is cold and the lower wall is warm. The effects of different values of Richardson number, Hartmann number, cavitation length and solid nanoparticles concentration on the flow and temperature field and heat transfer rate were evaluated. In this paper, the heat flux was assumed to be constant of 10 (W/m2) and the Reynolds number was assumed to be constant of 300 and the Hartmann number and the volume fraction of solid nanoparticles varied from 0 to 60 and 0 to 0.06, respectively. The Richardson number was considered to be 0.1, 1 and 5. Aspect ratios were 1, 1.5 and 2.
Findings
Comparison of the results of this paper with the results of the numerical and experimental studies of other researchers showed a good correlation. The results were presented in the form of velocity and temperature profiles, stream and isotherm lines and Nusselt numbers. The results showed that by increasing the Hartmann number, the heat transfer rate decreases. An increase from 0 to 20 in Hartmann number results in a 20 per cent decrease in Nusselt numbers, and by increasing the Hartmann number from 20 to 40, a 16 per cent decrease is observed in Nusselt number. Accordingly, it is inferred that by increasing the Hartmann number, the reduction in the Nusselt number is decreased. As the Richardson number increased, the heat transfer rate and, consequently, the Nusselt number increased. Therefore, an increase in the Richardson number results in an increase of the Nusselt number, that is, an increase in Richardson number from 0.1 to 1 and from 1 to 5 results in 37 and 47 per cent increase in Nusselt number, respectively.
Originality/value
Even though there have been numerous investigations conducted on convection in cavities under various configurations and boundary conditions, relatively few studies are conducted for the case of nanofluid mixed convection in square lid-driven cavity under the effect of magnetic field using two-phase model.
Details