Search results
1 – 10 of 13Mica Grujicic, S Ramaswami, Jennifer Snipes, Ramin Yavari and Philip Dudt
The purpose of this paper is to optimize the design of the advanced combat helmet (ACH) currently in use, by its designers in order to attain maximum protection against ballistic…
Abstract
Purpose
The purpose of this paper is to optimize the design of the advanced combat helmet (ACH) currently in use, by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of the soldiers returning from the recent conflicts is associated with their exposure to blast, the ACH should be redesigned in order to provide the necessary level of protection against blast loads. In the present work, augmentations of the ACH for improved blast protections are considered. These augmentations include the use of a polyurea (a nano-segregated elastomeric copolymer)-based ACH external coating/internal lining.
Design/methodology/approach
To demonstrate the efficacy of this approach, instrumented (unprotected, standard-ACH-protected, and augmented-ACH-protected) head-mannequin blast experiments are carried out. These experimental efforts are complemented with the appropriate combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction analysis.
Findings
The results obtained indicated that: when the extent of peak over-pressure reduction is used as a measure of the blast-mitigation effectiveness, polyurea-based augmentations do not noticeably improve, and sometimes slightly worsen, the performance of the standard ACH; when the extent of specific impulse reduction is used as a measure of the blast-mitigation effectiveness, application of the polyurea external coating to the standard ACH improves the blast-mitigation effectiveness of the helmet, particularly at shorter values of the charge-detonation standoff distance (SOD). At longer SODs, the effects of the polyurea-based ACH augmentations on the blast-mitigation efficacy of the standard ACH are inconclusive; and the use of the standard ACH significantly lowers the accelerations experienced by the skull and the intracranial matter. As far as the polyurea-based augmentations are concerned, only the internal lining at shorter SODs appears to yield additional reductions in the head accelerations.
Originality/value
To the authors’ knowledge, the present work contains the first report of a combined experimental/computational study addressing the problem of blast-mitigation by polyurea-based augmentation of ACH.
Details
Keywords
Mica Grujicic, S. Ramaswami and Jennifer Snipes
In the recent work, a new blast-wave impact-mitigation concept involving the use of a protective structure consisting of bimolecular reactants (polyvinyl pyridine+cyclohexyl…
Abstract
Purpose
In the recent work, a new blast-wave impact-mitigation concept involving the use of a protective structure consisting of bimolecular reactants (polyvinyl pyridine+cyclohexyl chloride), capable of undergoing a chemical reaction (to form polyvinyl pyridinium ionic salt) under shockwave loading conditions, was investigated using all-atom reactive equilibrium and non-equilibrium molecular-dynamics analyses. The purpose of this paper is to reveal the beneficial shockwave dispersion/attenuation effects offered by the chemical reaction, direct simulations of a fully supported single planar shockwave propagating through the reactive mixture were carried out, and the structure of the shock front examined as a function of the extent of the chemical reaction (i.e. as a function of the strength of the incident shockwave). The results obtained clearly revealed that chemical reactions give rise to considerable broadening of the shockwave front. In the present work, the effect of chemical reactions and the structure of the shockwaves are investigated at the continuum level.
Design/methodology/approach
Specifically, the problem of the (conserved) linear-momentum accompanying the interaction of an incident shockwave with the protective-structure/protected-structure material interface has been investigated, within the steady-wave/structured-shock computational framework, in order to demonstrate and quantify an increase in the time period over which the momentum is transferred and a reduction in the peak loading experienced by the protected structure, both brought about by the occurrence of the chemical reaction (within the protective structure).
Findings
The results obtained clearly revealed the beneficial shock-mitigation effects offered by a protective structure capable of undergoing a chemical reaction under shock-loading conditions.
Originality/value
To the authors’ knowledge, the present manuscript is the first report dealing with a continuum-level analysis of the blast-mitigation potential of chemical reactions.
Details
Keywords
M. Grujicic, A. Arakere, B. Pandurangan, A. Grujicic, A. Littlestone and R. Barsoum
Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of…
Abstract
Purpose
Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of a compliant/soft matrix and stiff/hard nanometer size hard domains. Recent investigations have shown that the use of polyurea as an external or internal coating/lining had substantially improved ballistic‐penetration resistance of metallic structures. The present work aims to use computational methods and tools in order to assess the shock‐mitigation ability of polyurea when used in the construction of different components (suspension‐pads, internal lining and external coating) of a combat helmet.
Design/methodology/approach
Shock‐mitigation capability of combat helmets has become an important functional requirement as shock‐ingress into the intra‐cranial cavity is known to be one of the main causes of traumatic brain injury (TBI). To assess the shock mitigation capability of polyurea, a combined Eulerian/Lagrangian fluid/solid transient non‐linear dynamics computational analysis of an air/helmet/head core sample is carried out and the temporal evolution of the axial stress and particle velocities (for different polyurea augmented helmet designs) are monitored.
Findings
The results obtained show that improvements in the shock‐mitigation performance of the helmet are obtained only in the case when polyurea is used as a helmet internal lining and that these improvements are relatively small. In addition, polyurea is found to slightly outperform conventional helmet foam, but only under relatively strong (greater than five atm) blastwave peak overpressures.
Originality/value
The present approach studies the effect of internal linings and external coatings on combat helmet blast mitigation performance.
Details
Keywords
Mica Grujicic, Ramin Yavari, Jennifer Snipes, S. Ramaswami and Roshdy Barsoum
The purpose of this paper is to study the mechanical response of polyurea, soda-lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass sandwich structures…
Abstract
Purpose
The purpose of this paper is to study the mechanical response of polyurea, soda-lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass sandwich structures under dynamic-loading conditions involving propagation of planar longitudinal shockwaves.
Design/methodology/approach
The problem of shockwave generation, propagation and interaction with material boundaries is investigated using non-equilibrium molecular dynamics. The results obtained are used to construct basic shock Hugoniot relationships associated with the propagation of shockwaves through a homogeneous material (polyurea or glass, in the present case). The fidelity of these relations is established by comparing them with their experimental counterparts, and the observed differences are rationalized in terms of the microstructural changes experienced by the shockwave-swept material. The relationships are subsequently used to predict the outcome of the interactions of shockwaves with polyurea/glass or glass/polyurea material boundaries. Molecular-level simulations are next used to directly analyze the same shockwave/material-boundary interactions.
Findings
The molecular-level simulations suggested, and the subsequent detailed microstructural analyses confirmed, the formation of topologically altered interfacial regions, i.e. polyurea/glass and glass/polyurea interphases.
Originality/value
To the authors’ knowledge, the present work is a first attempt to analyze, using molecular-level simulation methods, the interaction of shockwaves with material boundaries.
Details
Keywords
M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami and R.S. Barsoum
The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for…
Abstract
Purpose
The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for the accompanying interfacial decohesion.
Design/methodology/approach
The problems are investigated using all-atom non-equilibrium molecular-dynamics methods and tools. Before these methods/tools are employed, previously determined material constitutive relations for polyurea and fused-silica are used, within an acoustic-impedance-matching procedure, to predict the outcome of the interactions of stress-waves with the material-interfaces in question. These predictions pertain solely to the stress-wave/interface interaction aspects resulting in the formation of transmitted and reflected stress- or release-waves, but do not contain any information regarding potential interfacial decohesion. Direct molecular-level simulations confirmed some of these predictions, but also provided direct evidence of the nature and the extent of interfacial decohesion. To properly model the initial state of interfacial cohesion and its degradation during stress-wave-loading, reactive forcefield potentials are utilized.
Findings
Direct molecular-level simulations of the polyurea/fused-silica interfacial regions prior to loading revealed local changes in the bonding structure, suggesting the formation of an interphase. This interphase was subsequently found to greatly affect the polyurea/fused-silica decohesion strength.
Originality/value
To the authors’ knowledge, the present work is the first public-domain report of the use of the non-equilibrium molecular dynamics and reactive force-field potentials to study the problem of interfacial decohesion caused by the interaction of tensile waves with material interfaces.
Details
Keywords
M. Grujicic, J.S. Snipes, N. Chandrasekharan and S. Ramaswami
The purpose of this paper is to assess the blast‐mitigation potential and the protection ability of an air‐vacated buffer placed in front of a target structure under realistic…
Abstract
Purpose
The purpose of this paper is to assess the blast‐mitigation potential and the protection ability of an air‐vacated buffer placed in front of a target structure under realistic combat‐theatre conditions.
Design/methodology/approach
The blast‐mitigation efficacy of the air‐vacated buffer concept is investigated computationally using a combined Eulerian‐Lagrangian (CEL) fluid‐structure interaction (FSI) finite‐element analysis.
Findings
The two main findings resulting from the present work are: the air‐vacated buffer concept yields significant blast‐mitigation effects; and the buffer geometry and vacated‐air material‐state parameters (e.g. pressure, mass density, etc.) may significantly affect the extent of the blast‐mitigation effect.
Originality/value
The main contribution of the present work is a demonstration of the critical importance of timely deployment of the buffer relative to the arrival of the incident wave in order to fully exploit the air‐vacated buffer concept.
Details
Keywords
Mica Grujicic, Jennifer Snipes, Subrahmanian Ramaswami, Rohan Galgalikar, James Runt and James Tarter
Polyurea is an elastomeric two-phase co-polymer consisting of nanometer-sized discrete hard (i.e. high glass transition temperature) domains distributed randomly within a soft…
Abstract
Purpose
Polyurea is an elastomeric two-phase co-polymer consisting of nanometer-sized discrete hard (i.e. high glass transition temperature) domains distributed randomly within a soft (i.e. low glass transition temperature) matrix. A number of experimental investigations reported in the open literature clearly demonstrated that the use of polyurea external coatings and/or internal linings can significantly increase blast survivability and ballistic penetration resistance of target structures, such as vehicles, buildings and field/laboratory test-plates. When designing blast/ballistic-threat survivable polyurea-coated structures, advanced computational methods and tools are being increasingly utilized. A critical aspect of this computational approach is the availability of physically based, high-fidelity polyurea material models. The paper aims to discuss these issues.
Design/methodology/approach
In the present work, an attempt is made to develop a material model for polyurea which will include the effects of soft-matrix chain-segment molecular weight and the extent and morphology of hard-domain nano-segregation. Since these aspects of polyurea microstructure can be controlled through the selection of polyurea chemistry and synthesis conditions, and the present material model enables the prediction of polyurea blast-mitigation capacity and ballistic resistance, the model offers the potential for the “material-by-design” approach.
Findings
The model is validated by comparing its predictions with the corresponding experimental data.
Originality/value
The work clearly demonstrated that, in order to maximize shock-mitigation effects offered by polyurea, chemistry and processing/synthesis route of this material should be optimized.
Details
Keywords
M. Grujicic, B. d'Entremont, B. Pandurangan, A. Grujicic, M. LaBerge, J. Runt, J. Tarter and G. Dillon
Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an…
Abstract
Purpose
Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an important role since it can lead to devastating effects in the inflicted military personnel. To better understand the potential causes associated with DAI, this paper aims to investigate a transient non‐linear dynamics finite element simulation of the response of the brain white matter to shock loading.
Design/methodology/approach
Brain white matter is considered to be a heterogeneous material consisting of fiber‐like axons and a structure‐less extracellular matrix (ECM). The brain white matter microstructure in the investigated corpus callosum region of the brain is idealized using a regular hexagonal arrangement of aligned equal‐size axons. Deviatoric stress response of the axon and the ECM is modeled using a linear isotropic viscoelastic formulation while the hydrostatic stress response is modeled using a shock‐type equation of state. To account for the stochastic character of the brain white matter microstructure and shock loading, a parametric study is carried out involving a factorial variation of the key microstructural and waveform parameters.
Findings
The results obtained show that the extent of axon undulations and the strength of axon/ECM bonding profoundly affect the spatial distribution and magnitude of the axonal axial normal and shear stresses (the stresses which can cause diffuse axonal injury).
Originality/value
The present approach enables a more accurate determination of the mechanical behavior of brain white matter when subjected to a shock.
Details
Keywords
M. Grujicic, S. Ramaswami, J. S. Snipes, R. Yavari and P. Dudt
The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments…
Abstract
Purpose
The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of the soldiers returning from the recent conflicts is associated with their exposure to blast, the ACH should be redesigned in order to provide the necessary level of protection against blast loads. The paper aims to discuss this issue.
Design/methodology/approach
In the present work, an augmentation of the ACH for improved blast protection is considered. This augmentation includes the use of a polyurea (a nano-segregated elastomeric copolymer) based ACH external coating. To demonstrate the efficacy of this approach, blast experiments are carried out on instrumented head-mannequins (without protection, protected using a standard ACH, and protected using an ACH augmented by a polyurea explosive-resistant coating (ERC)). These experimental efforts are complemented with the appropriate combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction finite-element analysis.
Findings
The results obtained clearly demonstrated that the use of an ERC on an ACH affects (generally in a beneficial way) head-mannequin dynamic loading and kinematic response as quantified by the intracranial pressure, impulse, acceleration and jolt.
Originality/value
To the authors’ knowledge, the present work is the first reported combined experimental/computational study of the blast-protection efficacy and the mild traumatic brain-injury mitigation potential of polyurea when used as an external coating on a helmet.
Details
Keywords
Lokesh Singh, Rekh Ram Janghel and Satya Prakash Sahu
Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in…
Abstract
Purpose
Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in automated skin lesion analysis. The unavailability of adequate data poses difficulty in developing classification methods due to the skewed class distribution.
Design/methodology/approach
Boosting-based transfer learning (TL) paradigms like Transfer AdaBoost algorithm can compensate for such a lack of samples by taking advantage of auxiliary data. However, in such methods, beneficial source instances representing the target have a fast and stochastic weight convergence, which results in “weight-drift” that negates transfer. In this paper, a framework is designed utilizing the “Rare-Transfer” (RT), a boosting-based TL algorithm, that prevents “weight-drift” and simultaneously addresses absolute-rarity in skin lesion datasets. RT prevents the weights of source samples from quick convergence. It addresses absolute-rarity using an instance transfer approach incorporating the best-fit set of auxiliary examples, which improves balanced error minimization. It compensates for class unbalance and scarcity of training samples in absolute-rarity simultaneously for inducing balanced error optimization.
Findings
Promising results are obtained utilizing the RT compared with state-of-the-art techniques on absolute-rare skin lesion datasets with an accuracy of 92.5%. Wilcoxon signed-rank test examines significant differences amid the proposed RT algorithm and conventional algorithms used in the experiment.
Originality/value
Experimentation is performed on absolute-rare four skin lesion datasets, and the effectiveness of RT is assessed based on accuracy, sensitivity, specificity and area under curve. The performance is compared with an existing ensemble and boosting-based TL methods.
Details