Search results

1 – 10 of 536
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 February 2020

Tanmay Basak

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of…

189

Abstract

Purpose

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of temperature and larger penetration of heating within samples vs shapes of samples (circle, square and triangular).

Design/methodology/approach

Galerkin finite element method (GFEM) with adaptive meshing in a composite domain (free space and sample) is used in an in-house computer code. The finite element meshing is done in a composite domain involving triangle embedded within a semicircular hypothetical domain. The comparison of heating pattern is done for various shapes of samples involving identical cross-sectional area. Test cases reveal that triangular samples can induce larger penetration of heat and multiple heating fronts. A representative material (beef) with high dielectric loss corresponding to larger microwave power or heat absorption in contrast to low lossy samples is considered for the current study. The average power absorption within lossy samples has been computed using the spatial distribution and finite element basis sets. Four regimes have been selected based on various local maxima of the average power for detailed investigation. These regimes are selected based on thin, thick and intermediate limits of the sample size corresponding to the constant area of cross section, Ac involving circle or square or triangle.

Findings

The thin sample limit (Regime 1) corresponds to samples with spatially invariant power absorption, whereas power absorption attenuates from exposed to unexposed faces for thick samples (Regime 4). In Regimes 2 and 3, the average power absorption non-monotonically varies with sample size or area of cross section (Ac) and a few maxima of average power occur for fixed values of Ac involving various shapes. The spatial characteristics of power and temperature have been critically analyzed for all cross sections at each regime for lossy samples. Triangular samples are found to exhibit occurrence of multiple heating fronts for large samples (Regimes 3 and 4).

Practical implications

Length scales of samples of various shapes (circle, square and triangle) can be represented via Regimes 1-4. Regime 1 exhibits the identical heating rate for lateral and radial irradiations for any shapes of lossy samples. Regime 2 depicts that a larger heating rate with larger temperature non-uniformity can occur for square and triangular-Type 1 lossy sample during lateral irradiation. Regime 3 depicts that the penetration of heat at the core is larger for triangular samples compared to circle or square samples for lateral or radial irradiation. Regime 4 depicts that the penetration of heat is still larger for triangular samples compared to circular or square samples. Regimes 3 and 4 depict the occurrence of multiple heating fronts in triangular samples. In general, current analysis recommends the triangular samples which is also associated with larger values of temperature variation within samples.

Originality/value

GFEM with generalized mesh generation for all geometries has been implemented. The dielectric samples of any shape are surrounded by the circular shaped air medium. The unified mesh generation within the sample connected with circular air medium has been demonstrated. The algorithm also demonstrates the implementation of various complex boundary conditions in residuals. The numerical results compare the heating patterns for all geometries involving identical areas. The thermal characteristics are shown with a few generalized trends on enhanced heating or targeted heating. The circle or square or triangle (Type 1 or Type 2) can be selected based on specific heating objectives for length scales within various regimes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 23 November 2020

Leo Lukose and Tanmay Basak

This paper aims to investigate the role of shapes of containers (nine different containers) on entropy generation minimization involving identical cross-sectional area (1 sq…

152

Abstract

Purpose

This paper aims to investigate the role of shapes of containers (nine different containers) on entropy generation minimization involving identical cross-sectional area (1 sq. unit) in the presence of identical heating (isothermal). The nine containers are categorized into three classes based on their geometric similarities (Class 1: square, tilted square and parallelogram; Class 2: trapezoidal type 1, trapezoidal type 2 and triangular; Class 3: convex, concave and curved triangular).

Design/methodology/approach

Galerkin finite element method is used to solve the governing equations for a representative fluid (engine oil: Pr = 155) at Ra = 103–105. In addition, finite element method is used to solve the streamfunction equation and evaluate the entropy generation terms (Sψ and Sθ). Average Nusselt number (Nub¯) and average dimensionless spatial temperature (θ^) are also evaluated via the finite element basis sets.

Findings

Based on larger Nub¯, larger θ^ and optimal Stotal values, containers from each class are preferred as follows: Class 1: parallelogrammic and square, Class 2: trapezoidal type 1 and Class 3: convex (larger θ^, optimum Stotal) and concave (larger Nub¯). Containers with curved walls lead to enhance the thermal performance or efficiency of convection processes.

Practical implications

Comparison of entropy generation, intensity of thermal mixing (θ^) and average heat transfer rate give a clear picture for choosing the appropriate containers for processing of fluids at various ranges of Ra. The results based on this study may be useful to select a container (belonging to a specific class or containers with curved or plane walls), which can give optimal thermal performance from the given heat input, thereby leading to energy savings.

Originality/value

This study depicts that entropy generation associated with the convection process can be reduced via altering the shapes of containers to improve the thermal performance or efficiency for processing of identical mass with identical heat input. The comparative study of nine containers elucidates that the values of local maxima of Sψ (Sψ,max), Sθ (Sθ,max) and magnitude of Stotal vary with change in shapes of the containers (Classes 1–3) at fixed Pr and Ra. Such a comparative study based on entropy generation minimization on optimal heating during convection of fluid is yet to appear in the literature. The outcome of this study depicts that containers with curved walls are instrumental to optimize entropy generation with reasonable thermal processing rates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 13 June 2019

Debayan Das, Leo Lukose and Tanmay Basak

The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles…

182

Abstract

Purpose

The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles triangle) subjected to discrete heating with various locations of double heaters along the vertical (square) or inclined (triangular) arms.

Design/methodology/approach

Galerkin finite element method is used to solve the governing equations for a wide range of modified Darcy number, Dam = 10−5–10−2 with various fluid saturated porous media, Prm = 0.015 and 7.2 at a modified Rayleigh number, Ram = 106 involving the strategic placement of double heaters along the vertical or inclined arms (types 1-3). Adaptive mesh refinement is implemented based on the lengths of discrete heaters. Finite element based heat flow visualization via heatlines has been adopted to study heat distribution at various portions.

Findings

The strategic positioning of the double heaters (types 1-3) and the convective heatline vortices depict significant overall temperature elevation at both Dam = 10−4 and 10−2 compared to type 0 (single heater at each vertical or inclined arm). Types 2 and 3 are found to promote higher temperature uniformity and greater overall temperature elevation at Dam = 10−2. Overall, the triangular design 2 geometry is also found to be optimal in achieving greater temperature elevation for the porous media saturated with various fluids (Prm).

Practical implications

Multiple heaters (at each side [left or right] wall) result in enhanced temperature elevation compared to the single heater (at each side [left or right] wall). The results of the current work may be useful for the material processing, thermal storage and solar heating applications.

Originality/value

The heatline approach is used to visualize the heat flow involving double heaters along the side (left or right) arms (square and triangular geometries) during natural convection involving porous media. The heatlines depict the trajectories of heat flow that are essential for thermal management involving larger thermal elevation. The mixing cup or bulk average temperature values are obtained for all types of heating (types 0-3) involving all geometries, and overall temperature elevation is examined based on higher mixing cup temperature values.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 3 January 2023

Animesh Basak, A. Lee, Alokesh Pramanik, Ken Neubauer, Chander Prakash and S. Shankar

Regardless of the materials used, additive manufacturing (AM) is one of the most popular emerging fabrication processes used for creating complex and intricate structural…

324

Abstract

Purpose

Regardless of the materials used, additive manufacturing (AM) is one of the most popular emerging fabrication processes used for creating complex and intricate structural components. This study aims to investigate the effects of process parameters – namely, nozzle diameter, layer thickness and infill density on microstructure as well as the mechanical properties of 17–4 PH stainless steel specimens fabricated via material extrusion AM.

Design/methodology/approach

The experimental approach investigates the effects of printing parameters, including nozzle diameter, layer thickness and infill density, on surface roughness, physical and mechanical properties of the printed specimens. The tests were triplicated to ensure reproducibility of the experimental results.

Findings

The highest ultimate tensile strength, 795.26 MPa, was obtained on specimen that was fabricated with a 0.4 mm nozzle diameter, 0.14 mm layer thickness and 30% infill density. Furthermore, a 0.4 mm nozzle diameter also provided slightly better ductility. This came at the expense of surface finishing, as a 0.25 mm nozzle diameter exhibited better surface finishing over a 0.4 mm nozzle diameter. Infill density was shown to slightly influence the tensile properties, whereas layer thickness showed a significant effect on surface roughness. By contrast, hardness and ductility were independent of nozzle diameter, layer thickness and infill density.

Originality/value

This paper presents a comprehensive analysis relating to various input printing parameters on microstructural, physical and mechanical properties of additively manufactured 17–4 PH stainless steel to improve the printability and processability via AM.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

63

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 4 December 2017

Hakan F. Öztop, Nadezhda S. Bondareva, Mikhail A. Sheremet and Nidal Abu-Hamdeh

The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source.

192

Abstract

Purpose

The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source.

Design/methodology/approach

The unsteady governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The effects of dimensionless time is studied, and other governing parameters are Rayleigh number (Ra = 103 − 105), Prandtl number (Pr = 6.82), heater length (w/L = 0.2, 0.4 and 0.6) and distance of heater ratio (δ/L = 0.3).

Findings

An increase in the Rayleigh number leads to an increment of the fluid flow and heat transfer rates. Average Bejan number decreases with Ra as opposed to the average Nusselt number and average entropy generation. High values of Ra characterize a formation of long-duration oscillating behavior for the average Nusselt number and entropy generation.

Originality/value

The originality of this work is to analyze the entropy generation in natural convection in a one side open and partial heater-located cavity. This is a good application for electronical systems or building design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Book part
Publication date: 5 June 2023

Shima Yazdani and Esmail Lakzian

Currently, waste is regarded as a symptom of inefficiency. The generation of waste is a human activity, not a natural one. Currently, landfilling and incinerating wastes are…

Abstract

Currently, waste is regarded as a symptom of inefficiency. The generation of waste is a human activity, not a natural one. Currently, landfilling and incinerating wastes are common waste management techniques; but the use of these methods, in addition to wasting raw materials, causes damage to the environment, water, soil, and air. In the new concept of “Zero Waste” (ZW), waste is considered a valuable resource. A vital component of the methodology includes creating and managing items and procedures that limit the waste volume and toxicity and preserve and recover all resources rather than burning or burying them. With ZW, the end of one product becomes the beginning of another, unlike a linear system where waste is generated from product consumption. A scientific treatment technique, resource recovery, and reverse logistics may enable the waste from one product to become raw material for another, regardless of whether it is municipal, industrial, agricultural, biomedical, construction, or demolition. This chapter discusses the concept of zero landfills and zero waste and related initiatives and ideas; it also looks at potential obstacles to put the ZW concept into reality. Several methods are presented to investigate and evaluate efficient resource utilization for maximum recycling efficiency, economic improvement through resource minimization, and mandatory refuse collection. One of the most practical and used approaches is the Life Cycle Assessment (LCA) approach, which is based on green engineering and the cradle-to-cradle principle; the LCA technique is used in most current research, allowing for a complete investigation of possible environmental repercussions. This approach considers the entire life cycle of a product, including the origin of raw materials, manufacturing, transportation, usage, and final disposal, or recycling. Using a life cycle perspective, all stakeholders (product designers, service providers, political and legislative agencies, and consumers) may make environmentally sound and long-term decisions.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Access Restricted. View access options
Book part
Publication date: 14 December 2023

Yücel Erol and Emine Başak Savaş

Leaders can guide and direct their subordinates and even be a source of inspiration for their subordinates in order to carry out the work in an organization effectively and…

Abstract

Leaders can guide and direct their subordinates and even be a source of inspiration for their subordinates in order to carry out the work in an organization effectively and efficiently. In the light of current approaches, many different definitions of leadership, including paradoxical leadership and digital leadership, have been made. In the literature, no research has been found on the types of leadership for current approaches and the subject of spirituality in the workplace. Moreover, although some individuals have leadership qualities, they may not prefer to be leaders. In this chapter, it will be examined how the subject of spirituality contributes to encouraging individuals to lead and activate the power within them, and what kind of leadership (spiritual, authentic, servant, destructive, etc.) has a relationship with the subject of spirituality in the workplace.

Access Restricted. View access options
Book part
Publication date: 7 December 2021

Fabio Berton, Stefano Dughera and Andrea Ricci

In this chapter, we propose a theoretical assessment of the relationship between unions and investments. We develop a simple model where a firm chooses its investment level…

Abstract

In this chapter, we propose a theoretical assessment of the relationship between unions and investments. We develop a simple model where a firm chooses its investment level anticipating the employee's effort choice and the outcome of wage bargaining. First, and consistently with the holdup view, we find that the union's bargaining power has a negative effect on the accumulation of fixed capital. Second, we show that this negative effect is mitigated by the voice ability of unions to ease the displeasure of exerting effort. Hence, when the voice ability of unions is strong vis-à-vis their bargaining power, the holdup view does not necessarily survive, and unionized firms invest more than their nonunionized competitors.

Details

Workplace Productivity and Management Practices
Type: Book
ISBN: 978-1-80117-675-0

Keywords

Access Restricted. View access options
Article
Publication date: 16 February 2023

Hüseyin Gökçe and Mehmet Ali Biberci

This study aims to obtain the lowest surface roughness (Ra) and drill bit adhesion values (AV) depending on the change in control factors (cutting speed-Vc, feed rate-f and drill…

200

Abstract

Purpose

This study aims to obtain the lowest surface roughness (Ra) and drill bit adhesion values (AV) depending on the change in control factors (cutting speed-Vc, feed rate-f and drill bit-D) during drilling of the Al 5083 H116 alloy. Low roughness values increase the fatigue strength of the final part and affect tribological properties such as lubrication and friction. In the machining of ductile materials, the AV increases the Ra value and negatively affects the tool life.

Design/methodology/approach

Drilling tests were conducted using Taguchi L16 orthogonal array. The experimental measurement findings for Ra and AV were adjusted utilizing the Grey Relational Analysis (GRA), the Response Surface Method (RSM) and Artificial Neural Networks (ANN) to generate prediction values. SEM detected drill-tip adhesions and chip morphology and they were analyzed by EDX.

Findings

Ra and AV increased as the f increased. Vc affects AV; 86.04% f on Ra and 54.71% Vc on AV were the most effective control parameters. After optimizing Ra and AV using GRA, the f is the most effective control factor. Vc: 120 m/min, f: 0.025 mm/rev and D2 were optimal. ANN predicted with Ra 99.6% and AV 99.8% accurately. Mathematical models are obtained with RSM. The increase in f increased AV, which had a negative effect on Ra, whereas the increase in Vc decreased the adhesion tendency. With the D1 drill bit with the highest flute length, a relatively lower Ra was measured, as it facilitates chip evacuation. In addition, the high correlations of the mathematical models obtained indicate that the models can be used safely.

Originality/value

The novelty of this study is to determine the optimum drilling parameters with GRA and ANN for drilling the necessary holes for the assembly of ammunition wing propulsion systems, especially those produced with Al 5083 H116 alloy, with rivets and bolts.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 536
Per page
102050