Aimin Jiang, Haojiang Ding and Guoquan Wu
Based on the governing equations of magneto‐electro‐elastic media, the general solutions in the case of distinct eigenvalues and is introduced and expressed in four harmonic…
Abstract
Based on the governing equations of magneto‐electro‐elastic media, the general solutions in the case of distinct eigenvalues and is introduced and expressed in four harmonic functions. Then, the Green’s functions for point forces, point charge and point current acting in the interior of a two‐phase infinite magneto‐electro‐elastic plane in the case of distinct or multiple eigenvalues are given using the method of mirror image source.
Details
Keywords
Lorenzo Codecasa, Federico Moro and Piergiorgio Alotto
This paper aims to propose a fast and accurate simulation of large-scale induction heating problems by using nonlinear reduced-order models.
Abstract
Purpose
This paper aims to propose a fast and accurate simulation of large-scale induction heating problems by using nonlinear reduced-order models.
Design/methodology/approach
A projection space for model order reduction (MOR) is quickly generated from the first kernels of Volterra’s series to the problem solution. The nonlinear reduced model can be solved with time-harmonic phasor approximation, as the nonlinear quadratic structure of the full problem is preserved by the projection.
Findings
The solution of induction heating problems is still computationally expensive, even with a time-harmonic eddy current approximation. Numerical results show that the construction of the nonlinear reduced model has a computational cost which is orders of magnitude smaller than that required for the solution of the full problem.
Research limitations/implications
Only linear magnetic materials are considered in the present formulation.
Practical implications
The proposed MOR approach is suitable for the solution of industrial problems with a computing time which is orders of magnitude smaller than that required for the full unreduced problem, solved by traditional discretization methods such as finite element method.
Originality/value
The most common technique for MOR is the proper orthogonal decomposition. It requires solving the full nonlinear problem several times. The present MOR approach can be built directly at a negligible computational cost instead. From the reduced model, magnetic and temperature fields can be accurately reconstructed in whole time and space domains.
Details
Keywords
James Elgy and Paul David Ledger
Magnetic polarizability tensors (MPTs) provide an economical characterisation of conducting magnetic metallic objects and their spectral signature can aid in the solution of metal…
Abstract
Purpose
Magnetic polarizability tensors (MPTs) provide an economical characterisation of conducting magnetic metallic objects and their spectral signature can aid in the solution of metal detection inverse problems, such as scrap metal sorting, searching for unexploded ordnance in areas of former conflict and security screening at event venues and transport hubs. In this work, the authors aim to discuss methods for efficiently building large dictionaries for classification approaches.
Design/methodology/approach
Previous work has established explicit formulae for MPT coefficients, underpinned by a rigorous mathematical theory. To assist with the efficient computation of MPTs at differing parameters and objects of interest, this work applies new observations about the way the MPT coefficients can be computed. Furthermore, the authors discuss discretisation strategies for hp-finite elements on meshes of unstructured tetrahedra combined with prismatic boundary layer elements for resolving thin skin depths and using an adaptive proper orthogonal decomposition (POD) reduced-order modelling methodology to accelerate computations for varying parameters.
Findings
The success of the proposed methodologies is demonstrated using a series of examples. A significant reduction in computational effort is observed across all examples. The authors identify and recommend a simple discretisation strategy and improved accuracy is obtained using adaptive POD.
Originality/value
The authors present novel computations, timings and error certificates of MPT characterisations of realistic objects made of magnetic materials. A novel postprocessing implementation is introduced and an adaptive POD algorithm is demonstrated.
Details
Keywords
Robert E. Quinn and Kim S. Cameron
In this chapter, we assume the following: (1) the root cause of most organizational problems is culture and leadership, (2) executives seldom want to deal with these root causes…
Abstract
In this chapter, we assume the following: (1) the root cause of most organizational problems is culture and leadership, (2) executives seldom want to deal with these root causes, (3) because life is uncertain, organizational change is an emergent process, (4) most change processes unfold by reconstructing social reality, (5) the change process is inherently relational, (6) effective change efforts are enhanced by increasing the virtue of the actors, (7) change is embedded in the learning that flows from high-quality relationships, and (8) change agents may have to transcend conventional, economic exchange norms in order to demonstrate integrity and to build trust and openness. Drawing on the field of positive organizational scholarship, we focus on the change agent. We review the literature on self-change and offer several paths for becoming a positive leader.
Details
Keywords
We provide a new characterization of the equality of two positive-definite matrices A and B, and we use this to propose several new computationally convenient statistical tests…
Abstract
We provide a new characterization of the equality of two positive-definite matrices A and B, and we use this to propose several new computationally convenient statistical tests for the equality of two unknown positive-definite matrices. Our primary focus is on testing the information matrix equality (e.g. White, 1982, 1994). We characterize the asymptotic behavior of our new trace-determinant information matrix test statistics under the null and the alternative and investigate their finite-sample performance for a variety of models: linear regression, exponential duration, probit, and Tobit. The parametric bootstrap suggested by Horowitz (1994) delivers critical values that provide admirable level behavior, even in samples as small as n = 50. Our new tests often have better power than the parametric-bootstrap version of the traditional IMT; when they do not, they nevertheless perform respectably.
Details
Keywords
This chapter develops a set of two-step identification methods for social interactions models with unknown networks, and discusses how the proposed methods are connected to the…
Abstract
This chapter develops a set of two-step identification methods for social interactions models with unknown networks, and discusses how the proposed methods are connected to the identification methods for models with known networks. The first step uses linear regression to identify the reduced forms. The second step decomposes the reduced forms to identify the primitive parameters. The proposed methods use panel data to identify networks. Two cases are considered: the sample exogenous vectors span Rn (long panels), and the sample exogenous vectors span a proper subspace of Rn (short panels). For the short panel case, in order to solve the sample covariance matrices’ non-invertibility problem, this chapter proposes to represent the sample vectors with respect to a basis of a lower-dimensional space so that we have fewer regression coefficients in the first step. This allows us to identify some reduced form submatrices, which provide equations for identifying the primitive parameters.