Piotr Markowski, Eugeniusz Prociów and Łukasz Urbaniak
The purpose of this paper is to determine the thermoelectric properties of the germanium-based thin films and selecting the most suitable ones for fabrication of micrognerators…
Abstract
Purpose
The purpose of this paper is to determine the thermoelectric properties of the germanium-based thin films and selecting the most suitable ones for fabrication of micrognerators.
Design/methodology/approach
The germanium layers were deposited by low pressure magnetron sputtering method, in the pressure of 10−3/104 mbar range. The amount of dopants (germanium or vanadium) was changed in a limited extent. The influence of such changes on the layers output properties was studied. Post-processing heat treatment at temperature below 823 K was applied to activate the layers. It leads to improve the electrical and thermoelectrical performance.
Findings
The special attention was paid to the power factor (PF = S2/ρ) of the layers. To estimate power factor (PF) electrical resistivity (ρ) and Seebeck coefficient (S) were determined. The achieved Seebeck coefficient value was 185 Volt/Kelvin (μV/K) for germanium doped with vanadium (Ge:V1.15) and 225 μV/K for germanium doped with gold(Ge:Au3.13) layers at room temperature. After activation process, the PF reached a value of 2.5 × 10−4 W/m · K2 for the Ge:Au3.13 and 1.1 × 10−4 W/m · K2 for the Ge:V1.15 layers.
Originality/value
The fabricated thermoelectric layers can be thermally annealed in temperature up to 823 K in the air and in 1,023 K under a nitrogen atmosphere. This enables integration of thin layers with thick-film technology. Corning glass or low temperature cofired ceramic was used as a substrate.
Details
Keywords
Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…
Abstract
Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.
Details
Keywords
Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…
Abstract
Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.