Search results

21 – 30 of over 1000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 25 November 2021

Rui Yu and Hua Zhou

Trajectory tracking is an important issue to underactuated unmanned surface vehicles (USVs). However, parametric uncertainties and environmental disturbances bring great…

164

Abstract

Purpose

Trajectory tracking is an important issue to underactuated unmanned surface vehicles (USVs). However, parametric uncertainties and environmental disturbances bring great challenges to the precise trajectory tracking control of USVs. This paper aims to propose a robust trajectory tracking control algorithm with exponential stability for underactuated USVs with parametric uncertainties and unknown environmental disturbances.

Design/methodology/approach

In this method, the backstepping method and sliding mode control method are combined to ensure that the underactuated USV can track and maintain the desired trajectory. In addition, a modified switching-gain adaptation algorithm is adopted to enhance the robustness and reduce chattering. Besides, the global exponential stability of the closed-loop system is proved by Lyapunov’s direct method.

Findings

The proposed method in this paper offers a robust trajectory tracking solution to underactuated USVs and it is verified by simulations and experiments. Compared with the traditional proportion-integral-derivative method and several state-of-the-art algorithms, the proposed method has superior performance in simulation and experimental results.

Originality/value

This paper proposes a robust trajectory tracking control algorithm with exponential stability for underactuated USVs. The proposed method achieves exponential stability with better robustness and transient performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 25 February 2014

Long Thang Mai and Nan Yao Wang

The purpose of this paper is to improve the flexibility and tracking errors of the controllers-based neural networks (NNs) for mobile manipulator robot (MMR) in the presence of…

279

Abstract

Purpose

The purpose of this paper is to improve the flexibility and tracking errors of the controllers-based neural networks (NNs) for mobile manipulator robot (MMR) in the presence of time-varying uncertainties.

Design/methodology/approach

The conventional backstepping force/motion control is developed by the wavelet fuzzy CMAC neural networks (WFCNNs) (for mobile-manipulator robot). The proposed WFCNNs are applied in the tracking-position-backstepping controller to deal with the uncertain dynamics of the controlled system. In addition, an adaptive robust compensator is proposed to eliminate the inevitable approximation errors, uncertain disturbances, and relax the requirement for prior knowledge of the controlled system. Besides, the position tracking controller, an adaptive robust constraint-force is also considered. The online-learning algorithms of the control parameters (WFCNNs, robust term and constraint-force controller) are obtained by using the Lyapunov stability theorem.

Findings

The design of the proposed method is determined by the Lyapunov theorem such that the stability and robustness of the control-system are guaranteed.

Originality/value

The WFCNNs are more the generalized networks that can overcome the constant out-weight problem of the conventional fuzzy cerebellar model articulation controller (FCMAC), or can converge faster, give smaller approximation errors and size of networks in comparison with FNNs/NNs. In addition, an intelligent-control system by inheriting the advantage of the conventional backstepping-control-system is proposed to achieve the high-position tracking for the MMR control system in the presence of uncertainties variation.

Access Restricted. View access options

Abstract

Details

Quantitative and Empirical Analysis of Nonlinear Dynamic Macromodels
Type: Book
ISBN: 978-0-44452-122-4

Access Restricted. View access options
Article
Publication date: 7 April 2022

Hua Ding, Yanhong Huang, Jianqi Shi, Qi Shi and Yang Yang

Automatic guided vehicles (AGVs) are widely used in industrial fields. But most control strategies merely take the lateral force into consideration. This will reduce the accuracy…

374

Abstract

Purpose

Automatic guided vehicles (AGVs) are widely used in industrial fields. But most control strategies merely take the lateral force into consideration. This will reduce the accuracy, stability and robustness and will pay additional costs. Therefore, this paper aims to design a control strategy that initially considers lateral force. Thereby, it will improve the accuracy, stability and robustness and reduce the overall cost of AGV.

Design/methodology/approach

To achieve the goal of comprehensively improving AGV operating performance, this paper presents a new scheme, combining the dual-wheeled chassis model (DCM) using proportional–integral–differential (PID) control and a supporting quick response (QR) code navigation technology. DCM is the core, which analyzes the deviation caused by lateral force. Then, DCM with PID control by the control law is combined to suppress the errors. Meanwhile, QR code navigation technology provides effective data support for the control strategy.

Findings

Most AGV experiments are carried out in a standard environment. However, this study prepares unfavorable scenarios and operating conditions for the experiments that generate detailed data to demonstrate this study’s strategy, which can make an accurate, stable and robust operation process of AGV under various adverse environmental and mechanical factors.

Originality/value

This study proposed DCM, fully considering lateral force and converting the force into velocity. Subsequently, PID controls the speed of two wheels to reduce the error. QR code provides an efficient and low – cost way to obtain information. The three are cleverly combined as a novel industrial AGV control strategy, which can comprehensively improve the operating performance while reducing overall costs.

Access Restricted. View access options
Article
Publication date: 2 December 2019

Zhiyang Wang and Yongsheng Ou

This paper aims to deal with the trade-off of the stability and the accuracy in learning human control strategy from demonstrations. With the stability conditions and the…

187

Abstract

Purpose

This paper aims to deal with the trade-off of the stability and the accuracy in learning human control strategy from demonstrations. With the stability conditions and the estimated stability region, this paper aims to conveniently get rid of the unstable controller or controller with relatively small stability region. With this evaluation, the learning human strategy controller becomes much more robust to perturbations.

Design/methodology/approach

In this paper, the criterion to verify the stability and a method to estimate the domain of attraction are provided for the learning controllers trained with support vector machines (SVMs). Conditions are formulated based on the discrete-time system Lyapunov theory to ensure that a closed-form of the learning control system is strongly stable under perturbations (SSUP). Then a Chebychev point based approach is proposed to estimate its domain of attraction.

Findings

Some of such learning controllers have been implemented in the vertical balance control of a dynamically stable, statically unstable wheel mobile robot.

Access Restricted. View access options
Article
Publication date: 10 December 2020

Muhammad Haris, Muhammad Shafiq, Adyda Ibrahim and Masnita Misiran

The purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.

58

Abstract

Purpose

The purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.

Design/methodology/approach

This article proposes a finite-time controller for the synchronization of hyper(chaotic) systems in a given time. The chaotic systems are perturbed by the model uncertainties and external disturbances. The designed controller achieves finite-time synchronization convergence to the steady-state error without oscillation and elimination of the nonlinear terms from the closed-loop system. The finite-time synchronization convergence reduces the hacking duration and recovers the embedded message in chaotic signals within a given preassigned limited time. The free oscillation convergence keeps the energy consumption low and alleviates failure chances of the actuator. The proposed finite-time controller is a combination of linear and nonlinear parts. The linear part keeps the stability of the closed-loop, the nonlinear part increases the rate of convergence to the origin. A generalized form of analytical stability proof is derived for the synchronization of chaotic and hyper-chaotic systems. The simulation results provide the validation of the accomplish synchronization for the Lu chaotic and hyper-chaotic systems.

Findings

The designed controller not only reduces the time of convergence without oscillation of the trajectories which can run the system for a given time domain.

Originality/value

This work is originally written by the author.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 7 January 2021

Femi Thomas and Mija Salomi Johnson

This paper aims to propose output feedback-based control algorithms for the flight control system of a scaled, un-crewed helicopter in its hover flight mode.

124

Abstract

Purpose

This paper aims to propose output feedback-based control algorithms for the flight control system of a scaled, un-crewed helicopter in its hover flight mode.

Design/methodology/approach

The proposed control schemes are based on H control and composite nonlinear control. The gains of the output feedback controllers are obtained as the solution of a set of linear matrix inequalities (LMIs).

Findings

In the proposed schemes, the finite-time convergence of system states to trim condition is achieved with minimum deviation from the steady-state. As the proposed composite nonlinear output feedback design improves the transient response, it is well suited for a scaled helicopter flight. The use of measured output vector instead of the state vector or its estimate for feedback provides a simple control structure and eliminates the need for an observer in real-time application. The proposed control strategies are relevant to situations in which a simple controller is essential due to economic factors, reliability and hardware implementation constraints.

Practical implications

The proposed control strategies are relevant to situations in which a simple controller is essential due to economic factors, reliability and hardware implementation constraints. They also have significance in applications where the number of measurement quantities needs to be minimized such as in a fully functional rotor-craft unmanned aerial vehicle.

Social implications

The developed output feedback control algorithms can be used in small-scale helicopters for numerous civilian and military applications.

Originality/value

This work addresses the LMI-based formulation and solution of an output feedback controller for a hovering un-crewed helicopter. The stability and robustness of the closed-loop system are proved mathematically and the performance of the proposed schemes is compared with an existing strategy via simulation studies.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 19 September 2019

Pengcheng Wang, Dengfeng Zhang and Baochun Lu

Considering the external disturbances and dynamic uncertainties during the process of the trajectory tracking, this paper aims to address the problem of the welding robot…

228

Abstract

Purpose

Considering the external disturbances and dynamic uncertainties during the process of the trajectory tracking, this paper aims to address the problem of the welding robot trajectory tracking with guaranteed accuracy.

Design/methodology/approach

The controller consists sliding mode control, fuzzy control and low pass filter. The controller adopts low-pass filter to reduce the high frequency chattering control signal in sliding mode control. The fuzzy control model is used to simulate the external disturbance signal and the dynamic uncertainty signal, so that the controller can effectively restrain the chattering caused by the sliding mode control algorithm, realizing the track of the welding robot effectively and improving the robustness of the robot.

Findings

An innovative experiment device was adopted to realize the performance of the proposed controller. Considering the kinematic and dynamic uncertainty during the process of robot tracking, the tracking accuracy was realized within 0.3 mm.

Originality/value

This paper uses Lyapunov stability theory and Barbalat theorem to analyze the stability of the proposed controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 2 January 2018

Ali Abdul Razzaq Al – Tahir

Sensorless online measurements, application of variable speed drives has been given a great attention, especially over the past few years. In most of the previous literates…

151

Abstract

Purpose

Sensorless online measurements, application of variable speed drives has been given a great attention, especially over the past few years. In most of the previous literates dealing with permanent magnet synchronous motor (PMSM) drives, the combination of inter-sampled behavior with high gain design approach has not been discussed yet. This paper aims to discuss this feature in-depth.

Design/methodology/approach

The study contains a different approach for an observer running with surface-mounted permanent magnet synchronous machine drives to implement sensorless control. Design of sampled data observer methodology for one kind of AC machine having non-linear model and backed by an elegant formal stability convergence analysis using the tools of Lyapunov stability techniques was highly recommended in scientific contributions, and it is yet needed to be solved.

Findings

In this study, a solution to observation problem is covered and developed by combining ideas from the high-gain design approach and inter-sample predictor based on stator voltage measurements. The output state currents are accessible only at the sampling instant to solve the problem of states observation at continuous-time mode. This allows to reducing the usage of online appliances, improving reliability of control design and saving costs.

Practical implications

The proposed observer is capable of guaranteeing an acceptable closed loop dynamic response over a wide range of operation region and industrial process for random initial conditions.

Originality/value

The output state predictor has been interred in constructing the innovation correct term to prove the robustness of the proposed observer against attenuated sampling interval. To validate the theoretical results introduced by the main fundamental theorem and prove the observer stability convergence, the proposed observer is demonstrated through a sample study application to variable speed permanent magnet synchronous machine drive.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Book part
Publication date: 30 May 2006

Toichiro Asada, Pu Chen, Carl Chiarella and Peter Flaschel

Abstract

Details

Quantitative and Empirical Analysis of Nonlinear Dynamic Macromodels
Type: Book
ISBN: 978-0-44452-122-4

21 – 30 of over 1000
Per page
102050