Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 18 July 2023

Tomasz Mucha, Sijia Ma and Kaveh Abhari

Recent advancements in Artificial Intelligence (AI) and, at its core, Machine Learning (ML) offer opportunities for organizations to develop new or enhance existing capabilities…

1620

Abstract

Purpose

Recent advancements in Artificial Intelligence (AI) and, at its core, Machine Learning (ML) offer opportunities for organizations to develop new or enhance existing capabilities. Despite the endless possibilities, organizations face operational challenges in harvesting the value of ML-based capabilities (MLbC), and current research has yet to explicate these challenges and theorize their remedies. To bridge the gap, this study explored the current practices to propose a systematic way of orchestrating MLbC development, which is an extension of ongoing digitalization of organizations.

Design/methodology/approach

Data were collected from Finland's Artificial Intelligence Accelerator (FAIA) and complemented by follow-up interviews with experts outside FAIA in Europe, China and the United States over four years. Data were analyzed through open coding, thematic analysis and cross-comparison to develop a comprehensive understanding of the MLbC development process.

Findings

The analysis identified the main components of MLbC development, its three phases (development, release and operation) and two major MLbC development challenges: Temporal Complexity and Context Sensitivity. The study then introduced Fostering Temporal Congruence and Cultivating Organizational Meta-learning as strategic practices addressing these challenges.

Originality/value

This study offers a better theoretical explanation for the MLbC development process beyond MLOps (Machine Learning Operations) and its hindrances. It also proposes a practical way to align ML-based applications with business needs while accounting for their structural limitations. Beyond the MLbC context, this study offers a strategic framework that can be adapted for different cases of digital transformation that include automation and augmentation of work.

Available. Open Access. Open Access
Article
Publication date: 2 January 2023

Eric Weisz, David M. Herold and Sebastian Kummer

Although scholars argue that artificial intelligence (AI) represents a tool to potentially smoothen the bullwhip effect in the supply chain, only little research has examined this…

5923

Abstract

Purpose

Although scholars argue that artificial intelligence (AI) represents a tool to potentially smoothen the bullwhip effect in the supply chain, only little research has examined this phenomenon. In this article, the authors conceptualize a framework that allows for a more structured management approach to examine the bullwhip effect using AI. In addition, the authors conduct a systematic literature review of this current status of how management can use AI to reduce the bullwhip effect and locate opportunities for future research.

Design/methodology/approach

Guided by the systematic literature review approach from Durach et al. (2017), the authors review and analyze key attributes and characteristics of both AI and the bullwhip effect from a management perspective.

Findings

The authors' findings reveal that literature examining how management can use AI to smoothen the bullwhip effect is a rather under-researched area that provides an abundance of research avenues. Based on identified AI capabilities, the authors propose three key management pillars that form the basis of the authors' Bullwhip-Smoothing-Framework (BSF): (1) digital skills, (2) leadership and (3) collaboration. The authors also critically assess current research efforts and offer suggestions for future research.

Originality/value

By providing a structured management approach to examine the link between AI and the bullwhip phenomena, this study offers scholars and managers a foundation for the advancement of theorizing how to smoothen the bullwhip effect along the supply chain.

Details

The International Journal of Logistics Management, vol. 34 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

Access

Only content I have access to

Year

Content type

1 – 2 of 2
Per page
102050