Zhi Li, Guo Liu, Layne Liu, Xinjun Lai and Gangyan Xu
The purpose of this paper is to propose an effective and economical management platform to realize real-time tracking and tracing for prepackaged food supply chain based on…
Abstract
Purpose
The purpose of this paper is to propose an effective and economical management platform to realize real-time tracking and tracing for prepackaged food supply chain based on Internet of Things (IoT) technologies, and finally ensure a benign and safe food consumption environment.
Design/methodology/approach
Following service-oriented architecture, a flexible layered architecture of tracking and tracing platform for prepackaged food is developed. Besides, to reduce the implementation cost while realizing fine-grained tracking and tracing, an integrated solution of using both the QR code and radio-frequency identification (RFID) tag is proposed. Furthermore, Extensible Markup Language (XML) is adopted to facilitate the information sharing among applications and stakeholders.
Findings
The validity of the platform has been evaluated through a case study. First, the proposed platform is proved highly effective on realizing prepackaged food tracking and tracing throughout its supply chain, and can benefit all the stakeholders involved. Second, the integration of the QR code and RFID technologies is proved to be economical and could well ensure the real-time data collection. Third, the XML-based method is efficient to realize information sharing during the whole process.
Originality/value
The contributions of this paper lie in three aspects. First, the technical architecture of IoT-based tracking and tracing platform is developed. It could realize fine-grained tracking and tracing and could be flexible to adapt in many other areas. Second, the solution of integrating the QR code and RFID technologies is proposed, which could greatly decrease the cost of adopting the platform. Third, this platform enables the information sharing among all the involved stakeholders, which will further facilitate their cooperation on guaranteeing the quality and safety of prepackaged food.
Details
Keywords
Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo
This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.
Abstract
Purpose
This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.
Design/methodology/approach
Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.
Findings
The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.
Originality/value
The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.
Details
Keywords
Zehui Zhang, Qian Huang, Lewen Li, Dan Li, Xueping Luo and Xiaohong Zeng
The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the…
Abstract
Purpose
The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.
Design/methodology/approach
Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors, the principle of grounding current monitoring is proposed. Furthermore, the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments. Finally, through practical application in the traction substation of the railway bureau on site, a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.
Findings
The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status. The system performs excellently in terms of data collection accuracy, real-time performance and reliability of alarm functions. In addition, the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications, providing strong technical support for the safe operation of high-speed railway traction power supply systems.
Originality/value
This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system, which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current. The design, experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance, contributing innovative solutions to the field of railway power supply safety monitoring.
Details
Keywords
Abstract
Details
Keywords
Abstract
Purpose
The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.
Design/methodology/approach
First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.
Findings
Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.
Research limitations/implications
The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.
Practical implications
It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.
Social implications
The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).
Originality/value
In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.