Search results
1 – 4 of 4Liangqiang Li, Boyan Yao, Xi Li and Yu Qian
This work aims to explore why people review their experienced online shopping in such a manner (promptness), and what is the potential relationship between the users’ review…
Abstract
Purpose
This work aims to explore why people review their experienced online shopping in such a manner (promptness), and what is the potential relationship between the users’ review promptness and review motivation as well as reviewed contents.
Design/methodology/approach
To evaluate the customers’ responses regarding their shopping experiences, in this paper, the “purchase-review” promptness is studied to explore the temporal characteristics of users’ reviewing behavior online. Then, an aspect mining method was introduced for assessment of review text. Finally, a theoretical model is proposed to analyze how the customers’ reviews were formed.
Findings
First, the length of time elapsed between purchase and review was found to follow a power-law distribution, which characterizes an important number of human behaviors. Within online review behaviors, this meant that a high frequency population of reviewers tended to publish relatively quick reviews online. This showed that the customers’ reviewing behaviors on e-commerce websites may have been affected by extrinsic motivations, intrinsic motivations or both. Second, the proposed review-to-feature mapping technique is a feasible method for exploring reviewers’ opinions in both massive and sparse reviews. Finally, the customers’ reviewing behaviors were found to be mostly consistent with reviewers’ motivations.
Originality/value
First, the authors propose that the “promptness” of users in posting online reviews is an important external manifestation of their motivation, product experience and service experience. Second, a semi-supervised method of review-to-aspect mapping is used to solve the data quality problem in mining information from massive text data, which vary in length, detail and quality. Finally, a huge amount of e-commerce customers’ purchase-review promptness are studied and the results indicate that not all product features are responsible for the “prompt” posting of users’ reviews, and that the platform’s strategy to encourage users to post reviews will not work in the long term.
Details
Keywords
The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and…
Abstract
Purpose
The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and observe the important gaps in the literature that can inform a research agenda going forward.
Design/methodology/approach
A systematic literature strategy was utilized to identify and analyze scientific papers between 2012 and 2022. A total of 28 articles were identified and reviewed.
Findings
The outcomes reveal that while advances in machine learning have the potential to improve service access and delivery, there have been sporadic growth of literature in this area which is perhaps surprising given the immense potential of machine learning within the health sector. The findings further reveal that themes such as recordkeeping, drugs development and streamlining of treatment have primarily been focused on by the majority of authors in this area.
Research limitations/implications
The search was limited to journal articles published in English, resulting in the exclusion of studies disseminated through alternative channels, such as conferences, and those published in languages other than English. Considering that scholars in developing nations may encounter less difficulty in disseminating their work through alternative channels and that numerous emerging nations employ languages other than English, it is plausible that certain research has been overlooked in the present investigation.
Originality/value
This review provides insights into future research avenues for theory, content and context on adoption of machine learning within the health sector.
Details