Search results

1 – 8 of 8
Article
Publication date: 11 April 2016

Liming Zhai, Zhengwei Wang, Yongyao Luo and Zhongjie Li

The purpose of this paper is to analyze lubrication characteristics of a bidirectional thrust bearing in a pumped storage, considering the effect of the thermal elastic…

Abstract

Purpose

The purpose of this paper is to analyze lubrication characteristics of a bidirectional thrust bearing in a pumped storage, considering the effect of the thermal elastic deformation of the pad and collar.

Design/methodology/approach

This study used the fluid–solid interaction (FSI) technique to investigate the lubrication characteristics of a bidirectional thrust bearing for several typical operating conditions. The influences of the operating conditions and the thrust load on the lubrication characteristics were analyzed. Then, various pivot eccentricities were investigated to analyze the effects of the pivot position.

Findings

It is found that the effect of the radial tilt angle of the collar runner on the oil film is compensated for by the radial tilt of the pad. The central pivot support system is the main factor limiting the loads of bidirectional thrust bearings.

Originality/value

This paper has preliminarily revealed the lubrication mechanism of bidirectional tilting-pad thrust bearings. A three-dimensional FSI method is suggested to evaluate the thermal–elastic–hydrodynamic deformations of thrust bearings instead of the conventional method, which iteratively solves the Reynolds equation, the energy equation, the heat conduction equation and the elastic equilibrium equation.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 June 2017

Lei Cao, Yexiang Xiao, Zhengwei Wang, Yongyao Luo and Xiaoran Zhao

The purpose of this paper is to study the pressure fluctuation characteristics in the sidewall gaps of a centrifugal dredging pump in detail and discover the excitation sources.

Abstract

Purpose

The purpose of this paper is to study the pressure fluctuation characteristics in the sidewall gaps of a centrifugal dredging pump in detail and discover the excitation sources.

Design/methodology/approach

An unsteady numerical simulation with shear–stress transport–scale-adaptive simulation (SAS-SST) model was conducted for a centrifugal pump considering the sidewall gaps. The numerical codes were validated by a model test carried out in China Water Resources Beifang Investigation, Design and Research Co., Ltd. Fast Fourier transform was used to obtain the frequency components of the pressure fluctuation.

Findings

Pressure fluctuation characteristics inside the pump were analyzed for a condition near the design point. In the sidewall gaps, the circumferential, radial and axial distribution of the pressure fluctuation amplitude follow different laws. The non-axisymmetrical distribution of pressure fluctuation in the sidewall gaps shows that the unsteady flow in the volute casing which has a non-axisymmetrical geometry imposes an evident effect on the flow field in the sidewall gaps and the interaction between the main flow and the clearance flow cannot be neglected. There are several frequency components appearing as the dominant frequencies at different locations in the sidewall gaps, but the relatively stronger pressure fluctuations are all dominated by the rotating frequency. It indicates that the rotating impeller, which originally makes the shrouds rotate, is the primarily excitation source of the pressure fluctuations in the sidewall gaps.

Originality/value

The pressure fluctuation characteristics in the sidewall gaps of centrifugal pumps were first comprehensively analyzed. Unsteady flows in the sidewall gaps should be considered during the design and operation of centrifugal pumps.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 November 2021

Jingwei Cao, Liming Zhai, Yongyao Luo, Soo-Hwang Ahn, Zhengwei Wang and Yan Liu

The purpose of this paper is to reveal the transient thermo-elasto-hydrodynamic lubrication mechanism of a bidirectional thrust bearing in a pumped-storage unit, and to propose…

Abstract

Purpose

The purpose of this paper is to reveal the transient thermo-elasto-hydrodynamic lubrication mechanism of a bidirectional thrust bearing in a pumped-storage unit, and to propose the transient simulation method of two-way fluid-solid-thermal interaction of thrust bearing.

Design/methodology/approach

The transient fluid-solid-thermal interaction method is used to simulate the three-dimensional lubrication of the thrust bearing, during the start-up and shutdown process of a pumped storage unit. A pad including an oil hole is modelled to analyze the temporal variation of lubrication characteristics, such as the film pressure, thickness and temperature, during the transient operation process.

Findings

The injection of the high-pressure oil sufficiently affects the lubrication characteristics on film, in which the hysteresis phenomena were found between the start-up and shutdown possess.

Originality/value

This paper reveals the transient lubrication mechanism of tilting pad in a thrust bearing, by means of transient fluid-solid-thermal interaction method. Lubrication characteristics are simulated without assuming the temperature relationship between the oil film inlet and the outlet and the heat transfer on the pad free surface. This paper provides a theoretical basis for the safe design and stable operation of thrust bearings.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Liming Zhai, Yongyao Luo, Xin Liu, Funan Chen, Yexiang Xiao and Zhengwei Wang

The purpose of this paper is to analyze lubrication characteristics of a tilting pad thrust bearing considering the effect of the thermal elastic deformation of the pad and collar.

505

Abstract

Purpose

The purpose of this paper is to analyze lubrication characteristics of a tilting pad thrust bearing considering the effect of the thermal elastic deformation of the pad and collar.

Design/methodology/approach

This study used the fluid–solid interaction (FSI) technique to investigate the lubrication characteristics of a tilting pad thrust bearing for several typical operating conditions. The influences of the rotational speed, the thrust load and the oil supply temperature on the lubrication characteristics were analyzed.

Findings

The three-dimensional (3D) film model clearly shows that there is no pressure gradient but large temperature gradients across the film thickness. The wall heat transfer coefficients on the pad surfaces distribute in a very complex way and change within a large range. The rotational speed, the thrust load and the oil supply temperature have great but different influences on the lubrication characteristics.

Originality/value

This paper has preliminarily revealed the lubrication mechanism of the tilting-pad thrust bearings. The 3D FSI method is suggested to evaluate the thermal-elastic-hydrodynamic deformations of thrust bearings instead of the conventional method which iteratively solves the Reynolds equation, the energy equation, the heat conduction equation and the elastic equilibrium equation. Using FSI method, the heat transfer coefficients on the pad surfaces can be evaluated better.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 March 2016

Yexiang Xiao, Yangyang Yao, Zhengwei Wang, jin zhang, Yongyao Luo, Chongji Zeng and Wei Zhu

Numerically analyzed the flow characteristic and explored the hydrodynamic mechanism of the pump mode hump district formation of a Francis pump-turbine.

Abstract

Purpose

Numerically analyzed the flow characteristic and explored the hydrodynamic mechanism of the pump mode hump district formation of a Francis pump-turbine.

Design/methodology/approach

Numerical simulations were conducted of the entire pump-turbine flow passage under different discharge conditions by adopting the SST-CC turbulence model. The internal flow at hump district has been explained in detail combined with the model test in this paper. The unsteady flow and pressure fluctuation characteristics are analysed under five different discharge conditions in the hump and nearby region. The reason of the hump district formation is explored combined with the flow components hydraulic loss.

Findings

The large hydraulic loss, high relative peak-to-peak amplitudes and low dominant frequencies are on account of the disorganized internal flow condition. The formation of the hump district is concerned with the large hydraulic loss inside the draft tube, runner and guide vanes as there occurs secondary flow, backflow even vortex in the hump district. In addition, the low dominant frequencies at recording points inside the flow passage are always accompanied with the change of flow patterns and the spreading of the pressure fluctuations.

Originality/value

The analysis method of each flow components hydraulic loss combined with internal flow structure is adopted to explore the mechanism of pump mode hump characteristic. The flow characteristic and pressure pulse characteristics all correspond to the flow components hydraulic loss.

Details

Engineering Computations, vol. 33 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 20 November 2007

Lingjiu Zhou, Zhengwei Wang, Ruofu Xiao and Yongyao Luo

Some comparison of unsteady flow calculation and the measured stress showed that the dynamic stresses in blades are closely related to hydraulic instability. However, few studies…

1147

Abstract

Purpose

Some comparison of unsteady flow calculation and the measured stress showed that the dynamic stresses in blades are closely related to hydraulic instability. However, few studies have been conducted for the hydraulic machinery to calculate dynamic stresses caused by the unsteady hydraulic load. The present paper aims to analyse the stresses in blades of a Kaplan turbine.

Design/methodology/approach

By employing a partially coupled solution of 3D unsteady flow through its flow passage, the dynamic interaction problem of the blades was analyzed. The unsteady Reynolds‐averaged Navier‐Stokes equations with the SST κω turbulence model were solved to model the flow within the entire flow path of the Kaplan turbine. The time‐dependent hydraulic forces on the blades were used as the boundary condition for the dynamics problem for blades.

Findings

The results showed that the dynamic stress in the blade is low under approximately optimum operating conditions and is high under low‐output conditions with a small guide vane opening, a small blade angle and a high head.

Research limitations/implications

It is assumed that there is no feedback of blade motion on the flow. Self‐excited oscillations are beyond the scope of the present paper.

Originality/value

The authors developed a code to transfer the pressure on blades as a boundary condition for structure analysis without any interpolation. The study indicates that the prediction of dynamic stress during the design stage is possible. To ensure the safety of the blades it is recommended to check the safety coefficient during the design stage for at least two conditions: the 100 percent output with lower head and the 50 percent output with the highest head.

Details

Engineering Computations, vol. 24 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2013

Jing Yang, Long Meng, Lingjiu Zhou, Yongyao Luo and Zhengwei Wang

Thermal power plants have many problems regarding noise and vibration. Previous studies have shown that such problems are often related to the fans. However, the internal flows…

Abstract

Purpose

Thermal power plants have many problems regarding noise and vibration. Previous studies have shown that such problems are often related to the fans. However, the internal flows are difficult to analyze to find the cause of vibration and noise in fans in actual tests. Therefore, the unsteady internal flow field in a centrifugal fan was simulated numerical to identify the source. This paper aims to present these issues.

Design/methodology/approach

The unsteady Reynolds‐averaged Navier‐Stokes equations with the SST k‐ω turbulence model were solved to simulate the flow within the entire flow path of the fan. The conservation of mass and moment and energy equations were used to solve the flow field distribution. The time‐dependent pressure pulsations on the impeller were analyzed for the dynamics problem. The finite volume method with the SIMPLEC algorithm was used to discretize the time‐dependent equations. The second‐order upwind scheme was used for the convection terms and the central difference scheme was chosen for the diffusion terms in the momentum and transport equations.

Findings

The numerical simulations illustrated the flow characteristics inside the double suction centrifugal fan. The predicted efficiency is almost the same as the experimental value. The estimated pressure and temperature fields are quite reasonable. The results showed that the interaction between the non‐uniform impeller flow and the fixed volute aroused the significant pressure fluctuations, which is an important source of vibration and noise in centrifugal machinery.

Research limitations/implications

It is assumed that there is no change in the density in the whole flow passage, and the predicted outlet temperature is about 1.15 per cent lower than the experimental result.

Originality/value

The simulation study indicates that the prediction of noise is possible by using pressure pulsation. It is recommended to control the pressure pulsation in the fans, to decrease the vibration and noise of thermal power plants.

Details

Engineering Computations, vol. 30 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2013

Yongyao Luo, Zhengwei Wang, Jing Zhang, Jidi Zeng, Jiayang Lin and Guangqian Wang

Hydraulic instabilities are one of the most important reasons causing vibrations and fatigues in hydraulic turbines. The present paper aims to find the relationship between…

Abstract

Purpose

Hydraulic instabilities are one of the most important reasons causing vibrations and fatigues in hydraulic turbines. The present paper aims to find the relationship between pressure pulsations and fatigues of key parts of a Kaplan turbine.

Design/methodology/approach

3D unsteady numerical simulations were preformed for a number of operating conditions at high heads for a prototype Kaplan turbine, with the numerical results verified by online monitoring data. The contact method and the weak fluid‐structure interaction method were used to calculate the stresses in the multi‐body mechanism of the Kaplan turbine runner body based on the unsteady flow simulation result.

Findings

The results show that vortices in the vaneless space between the guide vanes and blades cause large pressure pulsations and vibrations for high heads with small guide vane openings. The dynamic stresses in the runner body parts are small for high heads with large guide vane openings, but are large for high heads with small guide vane openings.

Originality/value

A comprehensive numerical method including computational fluid dynamics analyses, finite element analyses and the contact method for multi‐body dynamics has been used to identity the sources of unit vibrations and key part failures.

Details

Engineering Computations, vol. 30 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 8 of 8