Search results
1 – 10 of 581Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang
The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…
Abstract
Purpose
The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.
Design/methodology/approach
At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.
Findings
Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.
Originality/value
This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.
Details
Keywords
Ning Qian, Muhammad Jamil, Wenfeng Ding, Yucan Fu and Jiuhua Xu
This paper is supposed to provide a critical review of current research progress on thermal management in grinding of superalloys, and future directions and challenges. By…
Abstract
Purpose
This paper is supposed to provide a critical review of current research progress on thermal management in grinding of superalloys, and future directions and challenges. By understanding the current progress and identifying the developing directions, thermal management can be achieved in the grinding of superalloys to significantly improve the grinding quality and efficiency.
Design/methodology/approach
The relevant literature is collected from Web of Science, Scopus, CNKI, Google scholar, etc. A total of 185 literature is analyzed, and the findings in the literature are systematically summarized. In this case, the current development and future trends of thermal management in grinding of superalloys can be concluded.
Findings
The recent developments in grinding superalloys, demands, challenges and solutions are analyzed. The theoretical basis of thermal management in grinding, the grinding heat partition analysis, is also summarized. The novel methods and technologies for thermal management are developed and reviewed, i.e. new grinding technologies and parameter optimization, super abrasive grinding wheel technologies, improved lubrication, highly efficient coolant delivery and enhanced heat transfer by passive thermal devices. Finally, the future trends and challenges are identified.
Originality/value
Superalloys have excellent physical and mechanical properties, e.g. high thermal stability, and good high-temperature strength. The superalloys have been broadly applied in the aerospace, energy and automobile industries. Grinding is one of the most important precision machining technologies for superalloy parts. Owing to the mechanical and physical properties of superalloys, during grinding processes, forces are large and a massive heat is generated. Consequently, the improvement of grinding quality and efficiency is limited. It is important to conduct thermal management in the grinding of superalloys to decrease grinding forces and heat generation. The grinding heat is also dissipated in time by enhanced heat transfer methods. Therefore, it is necessary and valuable to holistically review the current situation of thermal management in grinding of superalloys and also provide the development trends and challenges.
Details
Keywords
Xihong Jin and Feng Guo
The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies. However, this principle might not fully account for the dynamic…
Abstract
Purpose
The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies. However, this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects. This study aims to integrate methods of service life estimation and residual life assessment, which are based on operational loads, into the existing infinite life verification framework to further ensure the operational safety of subway trains.
Design/methodology/approach
Operational loads and fatigue loading spectra were determined through the field test. The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate. The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams. The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation. Finally, the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.
Findings
Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0, the metro car body could meet the design life requirement of 30 years or 6.6 million km. However, three out of five fatigue key points were significantly influenced by the operational loads, which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body. For a projected design life of 30 years, the tolerance depth is 12.2 mm, which can underscore a relatively robust damage tolerance capability.
Originality/value
The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results. The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment. The damage tolerance life can be effectively related by a newly developed equation in this study. It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.
Details
Keywords
Yang Li, Zhixiang Xie, Yaochen Qin and Zhicheng Zheng
This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The current…
Abstract
Purpose
This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The current study aimed to evaluate the role of a series of government-led environmental control projects in restoring the ecological environment of the Yellow River basin.
Design/methodology/approach
This paper uses unary linear regression, Mann–Kendall and wavelet analyses to study the spatial–temporal variations of vegetation and the response to climate changes in the Yellow River, China.
Findings
The results showed that for the past 17 years, not only the mean annual increase rate of the Normalized Difference Vegetation Index (NDVI) was 0.0059/a, but the spatial heterogeneity also yields significant results. The vegetation growth in the southeastern region was significantly better than that in the northwestern region. The variation period of the NDVI in the study area significantly shortened, and the most obvious oscillation period was half a year, with two peaks in one year. In addition, there are positive and negative effects of human activities on the change of vegetation cover of the Loess Plateau. The project of transforming cultivated land to forest and grassland promotes the increase of vegetation cover of the Loess plateau. Unfortunately, the regional urbanization and industrialization proliferated, and the overloading of grazing, deforestation, over-reclamation, and the exploitation and development of the energy area in the grassland region led to the reduction of the NDVI. Fortunately, the positive effects outweigh the negative ones.
Originality/value
This paper provides a comprehensive insight to analysis of the vegetation change and the responses of vegetation to climate change, with special reference to make the planning policy of ecological restoration. This paper argues that ecological restoration should be strengthened in areas with annual precipitation less than 450 mm.
Details
Keywords
Abstract
Details
Keywords
David J. Thompson, Dong Zhao, Evangelos Ntotsios, Giacomo Squicciarini, Ester Cierco and Erwin Jansen
The vibration of the rails is a significant source of railway rolling noise, often forming the dominant component of noise in the important frequency region between 400 and…
Abstract
Purpose
The vibration of the rails is a significant source of railway rolling noise, often forming the dominant component of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is to investigate the influence of the ground profile and the presence of the train body on the sound radiation from the rail.
Design/methodology/approach
Two-dimensional boundary element calculations are used, in which the rail vibration is the source. The ground profile and various different shapes of train body are introduced in the model, and results are observed in terms of sound power and sound pressure. Comparisons are also made with vibro-acoustic measurements performed with and without a train present.
Findings
The sound radiated by the rail in the absence of the train body is strongly attenuated by shielding due to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflected back down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at the trackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Once the sound power is known, the sound pressure with the train present can be approximated reasonably well with simple line source directivities.
Originality/value
Numerical models used to predict the sound radiation from railway rails have generally neglected the influence of the ground profile and reflections from the underside of the train body on the sound power and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.
Details
Keywords
Yifan Shi, Yuan Wang, Xiaozhou Liu and Ping Wang
Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth…
Abstract
Purpose
Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a 5-m wavelength range, leaving a significant knowledge gap in this field.
Design/methodology/approach
In this study, the authors used the well-established inertial reference method (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methods have been applied in different types of rail straightness measurement trollies, respectively. These instruments were tested in a high-speed rail section within a certain region of China. The test results were ultimately validated through using traditional straightedge and feeler gauge methods as reference data to evaluate the rail weld joint straightness within the 5-m wavelength range.
Findings
The research reveals that IR-method and MCR-method produce reasonably similar measurement results for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy for wavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed, carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.
Originality/value
The research compare two methods’ measurement effects in a longer wavelength range and demonstrate the superiority of MCR-method.
Details
Keywords
Maria Cristina Pietronudo, Fuli Zhou, Andrea Caporuscio, Giuseppe La Ragione and Marcello Risitano
This article aims to understand the role of intermediaries that manage innovation challenges in the healthcare scenario. More specifically, it explores the role of digital…
Abstract
Purpose
This article aims to understand the role of intermediaries that manage innovation challenges in the healthcare scenario. More specifically, it explores the role of digital platforms in addressing data challenges and fostering data-driven innovation in the health sector.
Design/methodology/approach
For exploring the role of platforms, the authors propose a theoretical model based on the platform’s dynamic capabilities, assuming that, because of their set of capabilities, platforms may trigger innovation practices in actor interactions. To corroborate the theoretical framework, the authors present a detailed in-depth case study analysis of Apheris, an innovative data-driven digital platform operating in the healthcare scenario.
Findings
The paper finds that the innovative data-driven digital platform can be used to revolutionize established practices in the health sector (a) accelerating research and innovation; (b) overcoming challenges related to healthcare data. The case study demonstrates how data and intellectual property sharing can be privacy-compliant and enable new capabilities.
Originality/value
The paper attempts to fill the gap between the use of the data-driven digital platform and the critical innovation practices in the healthcare industry.
Details
Keywords
Yi He, Feiyu Li and Xincan Liu
In today’s digital economy, it is very important to cultivate digital professionals with advanced interdisciplinary skills. The purpose of this paper is that universities play a…
Abstract
Purpose
In today’s digital economy, it is very important to cultivate digital professionals with advanced interdisciplinary skills. The purpose of this paper is that universities play a vital role in this effort, and research teams need to use the synergistic effect of various educational methods to improve the quality and efficiency of personnel training. For these teams, a powerful evaluation mechanism is very important to improve their innovation ability and the overall level of talents they cultivate. The policy of “selecting the best through public bidding” not only meets the multi-dimensional evaluation needs of contemporary research, but also conforms to the current atmosphere of evaluating scientific and technological talents.
Design/methodology/approach
Nonetheless, since its adoption, several challenges have emerged, including flawed project management systems, a mismatch between listed needs and actual core technological needs and a low rate of conversion of scientific achievements into practical outcomes. These issues are often traced back to overly simplistic evaluation methods for research teams. This paper reviews the literature on the “Open Bidding for Selecting the Best Candidates” policy and related evaluation mechanisms for research teams, identifying methodological shortcomings, a gap in exploring team collaboration and an oversight in team selection criteria.
Findings
It proposes a theoretical framework for the evaluation and selection mechanisms of research teams under the “Open Bidding for Selecting the Best Candidates” model, offering a solid foundation for further in-depth studies in this area.
Originality/value
Research progress on the Evaluation Mechanism of Scientific Research Teams in the Digital Economy Era from the Perspective of “Open Bidding for Selecting the Best Candidates.”
Details