Search results

1 – 10 of 226
Open Access
Article
Publication date: 27 July 2022

Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…

2356

Abstract

Purpose

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.

Design/methodology/approach

The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings

Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.

Originality/value

This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 23 May 2024

Hui Ma, Shenglan Chen, Xiaoling Liu and Pengcheng Wang

To enrich the research on the economic consequences of enterprise digital development from the perspective of capacity utilization.

Abstract

Purpose

To enrich the research on the economic consequences of enterprise digital development from the perspective of capacity utilization.

Design/methodology/approach

Using a sample of listed firms from 2010 to 2020, this paper exploits text analysis of annual reports to construct a proxy for enterprise digital development.

Findings

Results show that enterprise digital development not only improves their own capacity utilization but also generates a positive spillover effect on the capacity utilization of peer firms and firms in the supply chain. Next, based on the incomplete information about market demand and potential competitors when making capacity-building decisions, the mechanism tests show that improving the accuracy of market forecasts and reducing investment surges are potential channels behind the baseline results. Cross-sectional tests show the baseline result is more pronounced when industries are highly homogeneous and when firms have access to less information.

Originality/value

This paper contributes to the research related to the economic consequences of digital development. With the development of the digital economy, the real effects of enterprise digital development have also triggered extensive interest and exploration. Existing studies mainly examine the impact on physical operations, such as specialization division of labor, innovation activities, business performance or total factor productivity (Huang, Yu, & Zhang, 2019; Yuan, Xiao, Geng, & Sheng, 2021; Wang, Kuang, & Shao, 2017; Li, Liu, & Shao, 2021; Zhao, Wang, & Li, 2021). These studies measure the economic benefits from the perspective of the supply (output) side but neglect the importance of the supply system to adapt to the actual market demand. In contrast, this paper focuses on capacity utilization, aimed at estimating the net economic effect of digital development by considering the supply-demand fit scenario. Thus, our findings enrich the relevant studies on the potential consequences of digital development.

Details

China Accounting and Finance Review, vol. 26 no. 4
Type: Research Article
ISSN: 1029-807X

Keywords

Open Access
Article
Publication date: 4 July 2024

Songtao Qu, Qingyu Shi, Gong Zhang, Xinhua Dong and Xiaohua Xu

This study aims to address the problem of low-temperature wave soldering in industry production with Sn-9Zn-2.5 Bi-1.5In alloys and develop qualified process parameters. Sn–Zn…

Abstract

Purpose

This study aims to address the problem of low-temperature wave soldering in industry production with Sn-9Zn-2.5 Bi-1.5In alloys and develop qualified process parameters. Sn–Zn eutectic alloys are lead-free solders applied in consumer electronics due to their low melting point, high strength, and low cost. In the electronic assembly industry, Sn–Zn eutectic alloys have great potential for use.

Design/methodology/approach

This paper explored developing and implementing process parameters for low-temperature wave soldering of Sn–Zn alloys (SN-9ZN-2.5BI-1.5 In). A two-factor, three-level design of the experiments experiment was designed to simulate various conditions parameters encountered in Sn–Zn soldering, developed the nitrogen protection device of waving soldering and proposed the optimal process parameters to realize mass production of low-temperature wave soldering on Sn–Zn alloys.

Findings

The Sn-9Zn-2.5 Bi-1.5In alloy can overcome the Zn oxidation problem, achieve low-temperature wave soldering and meet IPC standards, but requires the development of nitrogen protection devices and the optimization of a series of process parameters. The design experiment reveals that preheating temperature, soldering temperature and flux affect failure phenomena. Finally, combined with the process test results, an effective method to support mass production.

Research limitations/implications

In term of overcome Zn’s oxidation characteristics, anti-oxidation wave welding device needs to be studied. Various process parameters need to be developed to achieve a welding process with lower temperature than that of lead solder(Sn–Pb) and lead-free SAC(Sn-0.3Ag-0.7Cu). The process window of Sn–Zn series alloy (Sn-9Zn-2.5 Bi-1.5In alloy) is narrow. A more stringent quality control chart is required to make mass production.

Practical implications

In this research, the soldering temperature of Sn-9Zn-2.5 Bi-1.5In is 5 °C and 25 °C lower than Sn–Pb and Sn-0.3Ag-0.7Cu(SAC0307). To the best of the authors’ knowledge, this work was the first time to apply Sn–Zn solder alloy under actual production conditions on wave soldering, which was of great significance for the study of wave soldering of the same kind of solder alloy.

Social implications

Low-temperature wave soldering can supported green manufacturing widely, offering a new path to achieve carbon emissions for many factories and also combat to international climate change.

Originality/value

There are many research papers on Sn–Zn alloys, but methods of achieving low-temperature wave soldering to meet IPC standards are infrequent. Especially the process control method that can be mass-produced is more challenging. In addition, the metal storage is very high and the cost is relatively low, which is of great help to provide enterprise competitiveness and can also support the development of green manufacturing, which has a good role in promoting the broader development of the Sn–Zn series.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 28 April 2020

Shunbin Zhong, Leiju Qiu and Baowen Sun

This paper aims to provide a survey of existing literature on the economic impacts of the internet on firm development, and outlines an overall framework of the existing studies…

2062

Abstract

Purpose

This paper aims to provide a survey of existing literature on the economic impacts of the internet on firm development, and outlines an overall framework of the existing studies. The purpose is to show how the internet affects firm development, which may help policymakers and other researchers to have a better knowledge of existing research characteristics, problems and future directions.

Design/methodology/approach

The authors review the studies on the economic impacts of the internet on firm characteristics and external environment, identify the characteristics of the existing literature and problems and discuss the directions of possible future research.

Findings

The authors find that the impacts of the internet on firm development mainly display two relevant mechanisms (firm characteristics and external environment), and they can be grouped into six channels (firm innovation, firm business mode, firm performance, firm productivity, firm import and export trade and firm location selection).

Originality/value

This study builds up a framework of how the internet impacts on firm development, which can add value to the future research of firm intelligent transaction modes in the crowd intelligence network.

Details

International Journal of Crowd Science, vol. 4 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

1142

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 24 January 2020

Mingyu Zhang, Jing Wang, Peiran Yang, Zhaohua Shang, Yi Liu and Longjie Dai

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using…

Abstract

Purpose

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using a thermal elastohydrodynamic lubrication (EHL) model for finite line contact. Concretely, the effects of the equivalent curvature radius of the bush and the pin, and the length of the bush are investigated.

Design/methodology/approach

In this paper, the contact between the bush and pin is simplified as finite line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. A constitutive equation Ree–Eyring fluid is used in the calculations.

Findings

It is found that by selecting an optimal equivalent radius of curvature and prolonging the bush length can improve the lubrication state effectively.

Originality/value

Under specific working conditions, there exists an optimal equivalent radius to maximize the minimum oil film thickness in the contact zone. The increase of generatrix length will weaken the stress concentration effect in the rounded corner area at both ends of the bush, which can improve the wear resistance of chain.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0448.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 9 November 2022

Jing Wang, Nathan N. Huynh and Edsel Pena

This paper evaluates an alternative queuing concept for marine container terminals that utilize a truck appointment system (TAS). Instead of having all lanes providing service to…

Abstract

Purpose

This paper evaluates an alternative queuing concept for marine container terminals that utilize a truck appointment system (TAS). Instead of having all lanes providing service to trucks with appointments, this study considers the case where walk-in lanes are provided to serve those trucks with no appointments or trucks with appointments but arrived late due to traffic congestion.

Design/methodology/approach

To enable the analysis of the proposed alternative queuing strategy, the queuing system is shown mathematically to be stationary. Due to the complexity of the model, a discrete event simulation (DES) model is used to obtain the average waiting number of trucks per lane for both types of service lanes: TAS-lanes and walk-in lanes.

Findings

The numerical experiment results indicated that the considered queuing strategy is most beneficial when the utilization of the TAS lanes is expected to be much higher than that of the walk-in lanes.

Originality/value

The novelty of this study is that it examines the scenario where trucks with appointments switch to the walk-in lanes upon arrival if the TAS-lane server is occupied and the walk-in lane server is not occupied. This queuing strategy/policy could reduce the average waiting time of trucks at marine container terminals. Approximation equations are provided to assist practitioners calculate the average truck queue length and the average truck queuing time for this type of queuing system.

Details

Journal of International Logistics and Trade, vol. 20 no. 3
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 15 August 2024

Jing Zou, Martin Odening and Ostap Okhrin

This paper aims to improve the delimitation of plant growth stages in the context of weather index insurance design. We propose a data-driven phase division that minimizes…

Abstract

Purpose

This paper aims to improve the delimitation of plant growth stages in the context of weather index insurance design. We propose a data-driven phase division that minimizes estimation errors in the weather-yield relationship and investigate whether it can substitute an expert-based determination of plant growth phases. We combine this procedure with various statistical and machine learning estimation methods and compare their performance.

Design/methodology/approach

Using the example of winter barley, we divide the complete growth cycle into four sub-phases based on phenology reports and expert instructions and evaluate all combinations of start and end points of the various growth stages by their estimation errors of the respective yield models. Some of the most commonly used statistical and machine learning methods are employed to model the weather-yield relationship with each selected method we applied.

Findings

Our results confirm that the fit of crop-yield models can be improved by disaggregation of the vegetation period. Moreover, we find that the data-driven approach leads to similar division points as the expert-based approach. Regarding the statistical model, in terms of yield model prediction accuracy, Support Vector Machine ranks first and Polynomial Regression last; however, the performance across different methods exhibits only minor differences.

Originality/value

This research addresses the challenge of separating plant growth stages when phenology information is unavailable. Moreover, it evaluates the performance of statistical and machine learning methods in the context of crop yield prediction. The suggested phase-division in conjunction with advanced statistical methods offers promising avenues for improving weather index insurance design.

Details

Agricultural Finance Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0002-1466

Keywords

Open Access
Article
Publication date: 3 February 2023

Jing Li

The aggregate index and per capita index have different meanings for some countries or regions. CO2 emissions per capita matters for China because of its huge population…

1448

Abstract

Purpose

The aggregate index and per capita index have different meanings for some countries or regions. CO2 emissions per capita matters for China because of its huge population. Therefore, this study aims to deepen the understanding of Kuznets curve from the perspective of CO2 emissions per capita. In this study, mathematical formulas will be derived and verified.

Design/methodology/approach

First, this study verified the existing problems with the environmental Kuznets curve (EKC) through multiple regression. Second, this study developed a theoretical derivation with the Solow model and balanced growth and explained the underlying principles of the EKC’s shape. Finally, this study quantitatively analyzed the influencing factors.

Findings

The CO2 emission per capita is related to the per capita GDP, nonfossil energy and total factor productivity (TFP). Empirical results support the EKC hypothesis. When the proportion of nonfossil and TFP increase by 1%, the per capita CO2 decrease by 0.041 t and 1.79 t, respectively. The growth rate of CO2 emissions per capita is determined by the difference between the growth rate of output per capita and the sum of efficiency and structural growth rates. To achieve the CO2 emission intensity target and economic growth target, the growth rate of per capita CO2 emissions must fall within the range of [−0.92%, 6.1%].

Originality/value

Inspired by the EKC and balanced growth, this study investigated the relationships between China’s environmental variables (empirical analysis) and developed a theoretical background (macro-theoretical derivation) through formula-based derivation, the results of which are universally valuable and provide policymakers with a newly integrated view of emission reduction and balanced development to address the challenges associated with climate change caused by energy.

Details

International Journal of Climate Change Strategies and Management, vol. 16 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 2 June 2022

Hanyu Yang, Jing Zhao and Meng Wang

This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane (CLL) intersections.

Abstract

Purpose

This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane (CLL) intersections.

Design/methodology/approach

The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness. The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.

Findings

The proposed model has a promising control effect under different geometric controlled conditions. Moreover, the proposed model performs robustly under various safety time headways, lengths of the CLL and green times of the main signal.

Originality/value

This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections. The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness

1 – 10 of 226