Search results
1 – 10 of 364Babak Lotfi and Bengt Ake Sunden
This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…
Abstract
Purpose
This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.
Design/methodology/approach
A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.
Findings
The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.
Originality/value
To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.
Details
Keywords
Yui-yip Lau, Zhang Jiamian, K. Y. Ng Adolf and Roozbeh Panahi
Emergency logistics is an important means to deal with disasters and public crises. Since the outbreak of the severe acute respiratory syndrome (SARS) virus in 2003, China has…
Abstract
Emergency logistics is an important means to deal with disasters and public crises. Since the outbreak of the severe acute respiratory syndrome (SARS) virus in 2003, China has established and developed an emergency logistics management system. With the outbreak of coronavirus disease (COVID-19) in China, its emergency logistics system is facing unfolded challenges. The main purposes of this study are to explore the development of China’s emergency logistics system in this context and identify the critical success factors for such systems. A series of focus groups are organized to collect the opinions of 24 interviewees from three Chinese cities, namely Wuhan, Shanghai, and Xi’an. Through the analysis, a framework of the critical success factors for emergency logistics in China is recreated. The key elements are demand forecasting and planning, inventory management, distribution network, and systematic information management. Findings suggest critical points on the design and imple-mentation of the emergency logistics operations during a chaotic period.
Details
Keywords
Armando Di Meglio, Nicola Massarotti and Perumal Nithiarasu
In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the…
Abstract
Purpose
In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the combined power of deep learning (DL) and physics-based methods (PBM) to create an active virtual replica of the physical system.
Design/methodology/approach
To achieve this goal, we introduce a deep neural network (DNN) as the digital twin and a Finite Element (FE) model as the physical system. This integrated approach is used to address the challenges of controlling an unsteady heat transfer problem with an integrated feedback loop.
Findings
The results of our study demonstrate the effectiveness of the proposed digital twinning approach in regulating the maximum temperature within the system under varying and unsteady heat flux conditions. The DNN, trained on stationary data, plays a crucial role in determining the heat transfer coefficients necessary to maintain temperatures below a defined threshold value, such as the material’s melting point. The system is successfully controlled in 1D, 2D and 3D case studies. However, careful evaluations should be conducted if such a training approach, based on steady-state data, is applied to completely different transient heat transfer problems.
Originality/value
The present work represents one of the first examples of a comprehensive digital twinning approach to transient thermal systems, driven by data. One of the noteworthy features of this approach is its robustness. Adopting a training based on dimensionless data, the approach can seamlessly accommodate changes in thermal capacity and thermal conductivity without the need for retraining.
Details
Keywords
Yanhao Sun, Tao Zhang, Shuxin Ding, Zhiming Yuan and Shengliang Yang
In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to…
Abstract
Purpose
In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to propose a scientific and reasonable centralized traffic control (CTC) system risk assessment method.
Design/methodology/approach
First, system-theoretic process analysis (STPA) is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis. Then, to enhance the accuracy of weight calculation, the fuzzy analytical hierarchy process (FAHP), fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and entropy weight method are employed to calculate the subjective weight, relative weight and objective weight of each index. These three types of weights are combined using game theory to obtain the combined weight for each index. To reduce subjectivity and uncertainty in the assessment process, the backward cloud generator method is utilized to obtain the numerical character (NC) of the cloud model for each index. The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system. This cloud model is used to obtain the CTC system's comprehensive risk assessment. The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud. Finally, this process yields the risk assessment results for the CTC system.
Findings
The cloud model can handle the subjectivity and fuzziness in the risk assessment process well. The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.
Originality/value
This study provides a cloud model-based method for risk assessment of CTC systems, which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment, achieving effective risk assessment of CTC systems. It can provide a reference and theoretical basis for risk management of the CTC system.
Details
Keywords
Mingzhe Tao, Jinghua Xu, Shuyou Zhang and Jianrong Tan
This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical…
Abstract
Purpose
This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical design, as well as numerous physical verifications, which can be employed for creating high-quality prototypes of parallel robots in a variety of applications.
Design/methodology/approach
A novel subregional meta-heuristic iteration (SMI) method is proposed for the optimization of parallel robots. Multiple subregional optimization objectives are established and optimization is achieved through the utilisation of an enhanced meta-heuristic optimization algorithm, which roughly employs chaotic mapping in the initialization strategy to augment the diversity of the initial solution. The non-dominated sorting method is utilised for updating strategies, thereby achieving multi-objective optimization.
Findings
The actuator error under the same trajectory is visibly reduced after SMI, with a maximum reduction of 6.81% and an average reduction of 1.46%. Meanwhile, the response speed, maximum bearing capacity and stiffness of the mechanism are enhanced by 63.83, 43.98 and 97.51%, respectively. The optimized mechanism is more robust and the optimization process is efficient.
Originality/value
The proposed robustness multi-objective optimization via SMI is more effective in improving the performance and precision of the parallel mechanisms in various applications. Furthermore, it provides a solution for the rapid and high-quality optimization design of parallel robots.
Details
Keywords
Maryam Amini, Armin Mahmoodi, Leila Hashemi, Reza Kiani Aslani, Arash Taheri and Mohammad Kiani
The contemporary landscape of supply chains necessitates a comprehensive integration of multiple components encompassing production, distribution and customer engagement. The…
Abstract
Purpose
The contemporary landscape of supply chains necessitates a comprehensive integration of multiple components encompassing production, distribution and customer engagement. The pursuit of supply chain harmony underscores the significance of pricing strategies within the framework of dual-channel distribution, particularly when confronted with the dynamics of asymmetric demand performance.
Design/methodology/approach
This paper delves into a nuanced decision-making challenge anchored in a dual-channel distribution context featuring a retailer and two distinct products. Notably, the retailer’s decision-making process employs the computational framework of dual grey numbers, a robust tool for handling uncertainty.
Findings
This study revolves around applying game theory to manufacturers. Each manufacturer presents its aggregated price proposition to the retailer. Subsequently, the retailer identifies the optimal pricing configuration among the manufacturers' aggregate prices while adhering to constraints such as spatial classification and inventory costs. This article’s contribution extends to delineating the retailer’s capacity to discern the influence of product market potential and the aggregate product cost on the overall demand.
Originality/value
The model’s innovation lies in its harmonious fusion of spatial classification, pricing strategies and inventory control. Notably, this novel integration provides a platform for unraveling the intricate interplay between non-symmetric market potential, production costs and cross-sensitivity. The investigation is underscored by the utilization of the double interval grey numbers, a powerful computational approach that accommodates the inherent uncertainty pervasive in the domain. This study fills a gap in the existing literature by offering an integrated framework unifying spatial allocation, pricing decisions and inventory optimization.
Details
Keywords
Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan
Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…
Abstract
Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.
Details
Keywords
Akhilesh S Thyagaturu, Giang Nguyen, Bhaskar Prasad Rimal and Martin Reisslein
Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long…
Abstract
Purpose
Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long latencies that hinder modern low-latency applications. In order to flexibly support the computing demands of users, cloud computing is evolving toward a continuum of cloud computing resources that are distributed between the end users and a distant data center. The purpose of this review paper is to concisely summarize the state-of-the-art in the evolving cloud computing field and to outline research imperatives.
Design/methodology/approach
The authors identify two main dimensions (or axes) of development of cloud computing: the trend toward flexibility of scaling computing resources, which the authors denote as Flex-Cloud, and the trend toward ubiquitous cloud computing, which the authors denote as Ubi-Cloud. Along these two axes of Flex-Cloud and Ubi-Cloud, the authors review the existing research and development and identify pressing open problems.
Findings
The authors find that extensive research and development efforts have addressed some Ubi-Cloud and Flex-Cloud challenges resulting in exciting advances to date. However, a wide array of research challenges remains open, thus providing a fertile field for future research and development.
Originality/value
This review paper is the first to define the concept of the Ubi-Flex-Cloud as the two-dimensional research and design space for cloud computing research and development. The Ubi-Flex-Cloud concept can serve as a foundation and reference framework for planning and positioning future cloud computing research and development efforts.
Details
Keywords
Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Abstract
Purpose
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Design/methodology/approach
Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.
Findings
The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value
The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
Details