Search results

1 – 2 of 2
Article
Publication date: 8 October 2018

Manikandan Subramaniyan, Sasitharan Subramaniyan, Moorthy Veeraswamy and Viswanatha Rao Jawalkar

This paper aims to address not only technical and economic challenges in electrical distribution system but also environmental impact and the depletion of conventional energy…

Abstract

Purpose

This paper aims to address not only technical and economic challenges in electrical distribution system but also environmental impact and the depletion of conventional energy resources due to rapidly growing economic development, results rising energy consumption.

Design/methodology/approach

Generally, the network reconfiguration (NR) problem is designed for minimizing power loss. Particularly, it is devised for maximizing power loss reduction by simultaneous NR and distributed generation (DG) placement. A loss sensitivity factor procedure is incorporated in the problem formulation that has identified sensitivity nodes for DG optimally. An adaptive weighted improved discrete particle swarm optimization (AWIDPSO) is proposed for ascertaining a feasible solution.

Findings

In AWIDPSO, the adaptively varying inertia weight increases the possible solution in the global search space and it has obtained the optimum solution within lesser iteration. Moreover, it has provided a solution for integrating more amount of DG optimally in the existing distribution network (DN).

Practical implications

The AWIDPSO seems to be a promising optimization tool for optimal DG placement in the existing DN, DG placement after NR and simultaneous NR and DG sizing and placement. Thus, a strategic balance is derived among economic development, energy consumption, environmental impact and depletion of conventional energy resources.

Originality/value

In this study, a standard 33-bus distribution system has been analyzed for optimal NR in the presence of DG using the developed framework. The power loss in the DN has reduced considerably by indulging a new and innovative approaches and technologies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 December 2021

Kalyan Sagar Kadali, Moorthy Veeraswamy, Marimuthu Ponnusamy and Viswanatha Rao Jawalkar

The purpose of this paper is to focus on the cost-effective and environmentally sustainable operation of thermal power systems to allocate optimum active power generation…

53

Abstract

Purpose

The purpose of this paper is to focus on the cost-effective and environmentally sustainable operation of thermal power systems to allocate optimum active power generation resultant for a feasible solution in diverse load patterns using the grey wolf optimization (GWO) algorithm.

Design/methodology/approach

The economic dispatch problem is formulated as a bi-objective optimization subjected to several operational and practical constraints. A normalized price penalty factor approach is used to convert these objectives into a single one. The GWO algorithm is adopted as an optimization tool in which the exploration and exploitation process in search space is carried through encircling, hunting and attacking.

Findings

A linear interpolated price penalty model is developed based on simple analytical geometry equations that perfectly blend two non-commensurable objectives. The desired GWO algorithm reports a new optimum thermal generation schedule for a feasible solution for different operational strategies. These are better than the earlier reports regarding solution quality.

Practical implications

The proposed method seems to be a promising optimization tool for the utilities, thereby modifying their operating strategies to generate electricity at minimum energy cost and pollution levels. Thus, a strategic balance is derived among economic development, energy cost and environmental sustainability.

Originality/value

A single optimization tool is used in both quadratic and non-convex cost characteristics thermal modal. The GWO algorithm has discovered the best, cost-effective and environmentally sustainable generation dispatch.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2