Search results
1 – 1 of 1Luan Thanh Le and Trang Xuan-Thi-Thu
To achieve the Sustainable Development Goals (SDGs) in the era of Logistics 4.0, machine learning (ML) techniques and simulations have emerged as highly optimized tools. This…
Abstract
Purpose
To achieve the Sustainable Development Goals (SDGs) in the era of Logistics 4.0, machine learning (ML) techniques and simulations have emerged as highly optimized tools. This study examines the operational dynamics of a supply chain (SC) in Vietnam as a case study utilizing an ML simulation approach.
Design/methodology/approach
A robust fuel consumption estimation model is constructed by leveraging multiple linear regression (MLR) and artificial neural network (ANN). Subsequently, the proposed model is seamlessly integrated into a cutting-edge SC simulation framework.
Findings
This paper provides valuable insights and actionable recommendations, empowering SC practitioners to optimize operational efficiencies and fostering an avenue for further scholarly investigations and advancements in this field.
Originality/value
This study introduces a novel approach assessing sustainable SC performance by utilizing both traditional regression and ML models to estimate transportation costs, which are then inputted into the discrete event simulation (DES) model.
Details