Search results

1 – 1 of 1
Content available
Article
Publication date: 24 July 2024

Luan Thanh Le and Trang Xuan-Thi-Thu

To achieve the Sustainable Development Goals (SDGs) in the era of Logistics 4.0, machine learning (ML) techniques and simulations have emerged as highly optimized tools. This…

305

Abstract

Purpose

To achieve the Sustainable Development Goals (SDGs) in the era of Logistics 4.0, machine learning (ML) techniques and simulations have emerged as highly optimized tools. This study examines the operational dynamics of a supply chain (SC) in Vietnam as a case study utilizing an ML simulation approach.

Design/methodology/approach

A robust fuel consumption estimation model is constructed by leveraging multiple linear regression (MLR) and artificial neural network (ANN). Subsequently, the proposed model is seamlessly integrated into a cutting-edge SC simulation framework.

Findings

This paper provides valuable insights and actionable recommendations, empowering SC practitioners to optimize operational efficiencies and fostering an avenue for further scholarly investigations and advancements in this field.

Originality/value

This study introduces a novel approach assessing sustainable SC performance by utilizing both traditional regression and ML models to estimate transportation costs, which are then inputted into the discrete event simulation (DES) model.

Details

Maritime Business Review, vol. 9 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Access

Only content I have access to

Year

Content type

1 – 1 of 1