Search results
1 – 4 of 4Stutee Mohanty, B.C.M. Patnaik, Ipseeta Satpathy and Suresh Kumar Sahoo
This paper aims to identify, examine, and present an empirical research design of behavioral finance of potential investors during Covid-19.
Abstract
Purpose
This paper aims to identify, examine, and present an empirical research design of behavioral finance of potential investors during Covid-19.
Design/methodology/approach
A well-structured questionnaire was designed; a survey was conducted among potential investors using convenience sampling, and 200 valid responses were collected. The research work uses multiple regression and discriminant function analysis to evaluate the influence of cognitive factors on the financial decision-making of investors.
Findings
Recency and familiarity bias are proven to have the highest significant impact on the financial decisions of investors followed by confirmation bias. Overconfidence bias had a negligible effect on the decision-making process of the respondents and found insignificant.
Research limitations/implications
Covid-19 is a temporary phase that may lead to changes in financial behavior and investors’ decisions in the near future.
Practical implications
The paper will help academicians, scholars, analysts, practitioners, policymakers and firms dealing with capital markets to execute their job responsibilities with respect to the cognitive bias in terms of taking financial decisions.
Originality/value
The present investigation attempts to fill the gap in the literature on the intended topic because it is evident from literature on the chosen subject that no study has been undertaken to evaluate the impact of cognitive biases on financial behavior of investors during Covid-19.
Details
Keywords
F.J. Farsana, V.R. Devi and K. Gopakumar
This paper introduces an audio encryption algorithm based on permutation of audio samples using discrete modified Henon map followed by substitution operation with keystream…
Abstract
This paper introduces an audio encryption algorithm based on permutation of audio samples using discrete modified Henon map followed by substitution operation with keystream generated from the modified Lorenz-Hyperchaotic system. In this work, the audio file is initially compressed by Fast Walsh Hadamard Transform (FWHT) for removing the residual intelligibility in the transform domain. The resulting file is then encrypted in two phases. In the first phase permutation operation is carried out using modified discrete Henon map to weaken the correlation between adjacent samples. In the second phase it utilizes modified-Lorenz hyperchaotic system for substitution operation to fill the silent periods within the speech conversation. Dynamic keystream generation mechanism is also introduced to enhance the correlation between plaintext and encrypted text. Various quality metrics analysis such as correlation, signal to noise ratio (SNR), differential attacks, spectral entropy, histogram analysis, keyspace and key sensitivity are carried out to evaluate the quality of the proposed algorithm. The simulation results and numerical analyses demonstrate that the proposed algorithm has excellent security performance and robust against various cryptographic attacks.
Details