Ward van Zoonen, Anu Sivunen and Ronald E. Rice
This study aims to examine some of the benefits and drawbacks of communication visibility. Specifically, building on communication visibility theory, the authors study how and why…
Abstract
Purpose
This study aims to examine some of the benefits and drawbacks of communication visibility. Specifically, building on communication visibility theory, the authors study how and why message transparency and network translucence may increase knowledge reuse and perceived overload through behavioral responses of vicarious learning and technology-assisted supplemental work.
Design/methodology/approach
Drawing on survey data obtained from 1,127 employees of a global company operating in the industrial machinery sector, the authors used structural equation modeling to test the hypothesized model.
Findings
The results demonstrate that the two aspects of communication visibility yield somewhat differential benefits and drawbacks in terms of knowledge reuse and communication overload, through vicarious learning and supplemental work practices.
Research limitations/implications
The results demonstrate the relationship between different aspects of communication visibility and knowledge reuse, specifically through vicarious learning. Furthermore, the findings highlight a potential drawback of visibility – communication overload – specifically through technology-assisted supplemental work. Overall, network translucence seems more beneficial compared to message transparency in terms of knowledge reuse and communication overload.
Originality/value
The study connects with recent work on communication visibility by distinguishing differential direct and indirect effects of message transparency and network translucence. It also extends this work by testing relationships between communication visibility and a potential drawback of visibility – communication overload – specifically through technology-assisted supplemental work.
Details
Keywords
The paper provides a detailed historical account of Douglass C. North's early intellectual contributions and analytical developments in pursuing a Grand Theory for why some…
Abstract
Purpose
The paper provides a detailed historical account of Douglass C. North's early intellectual contributions and analytical developments in pursuing a Grand Theory for why some countries are rich and others poor.
Design/methodology/approach
The author approaches the discussion using a theoretical and historical reconstruction based on published and unpublished materials.
Findings
The systematic, continuous and profound attempt to answer the Smithian social coordination problem shaped North's journey from being a young serious Marxist to becoming one of the founders of New Institutional Economics. In the process, he was converted in the early 1950s into a rigid neoclassical economist, being one of the leaders in promoting New Economic History. The success of the cliometric revolution exposed the frailties of the movement itself, namely, the limitations of neoclassical economic theory to explain economic growth and social change. Incorporating transaction costs, the institutional framework in which property rights and contracts are measured, defined and enforced assumes a prominent role in explaining economic performance.
Originality/value
In the early 1970s, North adopted a naive theory of institutions and property rights still grounded in neoclassical assumptions. Institutional and organizational analysis is modeled as a social maximizing efficient equilibrium outcome. However, the increasing tension between the neoclassical theoretical apparatus and its failure to account for contrasting political and institutional structures, diverging economic paths and social change propelled the modification of its assumptions and progressive conceptual innovation. In the later 1970s and early 1980s, North abandoned the efficiency view and gradually became more critical of the objective rationality postulate. In this intellectual movement, North's avant-garde research program contributed significantly to the creation of New Institutional Economics.
Details
Keywords
This paper tests whether Bayesian A/B testing yields better decisions that traditional Neyman-Pearson hypothesis testing. It proposes a model and tests it using a large, multiyear…
Abstract
Purpose
This paper tests whether Bayesian A/B testing yields better decisions that traditional Neyman-Pearson hypothesis testing. It proposes a model and tests it using a large, multiyear Google Analytics (GA) dataset.
Design/methodology/approach
This paper is an empirical study. Competing A/B testing models were used to analyze a large, multiyear dataset of GA dataset for a firm that relies entirely on their website and online transactions for customer engagement and sales.
Findings
Bayesian A/B tests of the data not only yielded a clear delineation of the timing and impact of the intellectual property fraud, but calculated the loss of sales dollars, traffic and time on the firm’s website, with precise confidence limits. Frequentist A/B testing identified fraud in bounce rate at 5% significance, and bounces at 10% significance, but was unable to ascertain fraud at the standard significance cutoffs for scientific studies.
Research limitations/implications
None within the scope of the research plan.
Practical implications
Bayesian A/B tests of the data not only yielded a clear delineation of the timing and impact of the IP fraud, but calculated the loss of sales dollars, traffic and time on the firm’s website, with precise confidence limits.
Social implications
Bayesian A/B testing can derive economically meaningful statistics, whereas frequentist A/B testing only provide p-value’s whose meaning may be hard to grasp, and where misuse is widespread and has been a major topic in metascience. While misuse of p-values in scholarly articles may simply be grist for academic debate, the uncertainty surrounding the meaning of p-values in business analytics actually can cost firms money.
Originality/value
There is very little empirical research in e-commerce that uses Bayesian A/B testing. Almost all corporate testing is done via frequentist Neyman-Pearson methods.