Nicola Castellano, Roberto Del Gobbo and Lorenzo Leto
The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on…
Abstract
Purpose
The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on the use of Big Data in a cluster analysis combined with a data envelopment analysis (DEA) that provides accurate and reliable productivity measures in a large network of retailers.
Design/methodology/approach
The methodology is described using a case study of a leading kitchen furniture producer. More specifically, Big Data is used in a two-step analysis prior to the DEA to automatically cluster a large number of retailers into groups that are homogeneous in terms of structural and environmental factors and assess a within-the-group level of productivity of the retailers.
Findings
The proposed methodology helps reduce the heterogeneity among the units analysed, which is a major concern in DEA applications. The data-driven factorial and clustering technique allows for maximum within-group homogeneity and between-group heterogeneity by reducing subjective bias and dimensionality, which is embedded with the use of Big Data.
Practical implications
The use of Big Data in clustering applied to productivity analysis can provide managers with data-driven information about the structural and socio-economic characteristics of retailers' catchment areas, which is important in establishing potential productivity performance and optimizing resource allocation. The improved productivity indexes enable the setting of targets that are coherent with retailers' potential, which increases motivation and commitment.
Originality/value
This article proposes an innovative technique to enhance the accuracy of productivity measures through the use of Big Data clustering and DEA. To the best of the authors’ knowledge, no attempts have been made to benefit from the use of Big Data in the literature on retail store productivity.
Details
Keywords
Francesca Bartolacci, Roberto Del Gobbo and Michela Soverchia
This paper contributes to the field of public services’ performance measurement systems by proposing a benchmarking-based methodology that improves the effective use of big and…
Abstract
Purpose
This paper contributes to the field of public services’ performance measurement systems by proposing a benchmarking-based methodology that improves the effective use of big and open data in analyzing and evaluating efficiency, for supporting internal decision-making processes of public entities.
Design/methodology/approach
The proposed methodology uses data envelopment analysis in combination with a multivariate outlier detection algorithm—local outlier factor—to ensure the proper exploitation of the data available for efficiency evaluation in the presence of the multidimensional datasets with anomalous values that often characterize big and open data. An empirical implementation of the proposed methodology was conducted on waste management services provided in Italy.
Findings
The paper addresses the problem of misleading targets for entities that are erroneously deemed inefficient when applying data envelopment analysis to real-life datasets containing outliers. The proposed approach makes big and open data useful in evaluating relative efficiency, and it supports the development of performance-based strategies and policies by public entities from a data-driven public sector perspective.
Originality/value
Few empirical studies have explored how to make the use of big and open data more feasible for performance measurement systems in the public sector, addressing the challenges related to data quality and the need for analytical tools readily usable from a managerial perspective, given the poor diffusion of technical skills in public organizations. The paper fills this research gap by proposing a methodology that allows for exploiting the opportunities offered by big and open data for supporting internal decision-making processes within the public services context.