Elena Stefana, Paola Cocca, Federico Fantori, Filippo Marciano and Alessandro Marini
This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.
Abstract
Purpose
This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.
Design/methodology/approach
The authors conducted a literature review about the studies focusing on approaches combining OEE with monetary units and/or resource issues. The authors developed an approach based on Overall Equipment Cost Loss (OECL), introducing a component for the production resource consumption of a machine. A real case study about a smart multicenter three-spindle machine is used to test the applicability of the approach.
Findings
The paper proposes Resource Overall Equipment Cost Loss (ROECL), i.e. a new KPI expressed in monetary units that represents the total cost of losses (including production resource ones) caused by inefficiencies and deviations of the machine or equipment from its optimal operating status occurring over a specific time period. ROECL enables to quantify the variation of the product cost occurring when a machine or equipment changes its health status and to determine the actual product cost for a given production order. In the analysed case study, the most critical production orders showed an actual production cost about 60% higher than the minimal cost possible under the most efficient operating conditions.
Originality/value
The proposed approach may support both production and cost accounting managers during the identification of areas requiring attention and representing opportunities for improvement in terms of availability, performance, quality, and resource losses.
Details
Keywords
Laura Lucantoni, Sara Antomarioni, Filippo Emanuele Ciarapica and Maurizio Bevilacqua
The Overall Equipment Effectiveness (OEE) is considered a standard for measuring equipment productivity in terms of efficiency. Still, Artificial Intelligence solutions are rarely…
Abstract
Purpose
The Overall Equipment Effectiveness (OEE) is considered a standard for measuring equipment productivity in terms of efficiency. Still, Artificial Intelligence solutions are rarely used for analyzing OEE results and identifying corrective actions. Therefore, the approach proposed in this paper aims to provide a new rule-based Machine Learning (ML) framework for OEE enhancement and the selection of improvement actions.
Design/methodology/approach
Association Rules (ARs) are used as a rule-based ML method for extracting knowledge from huge data. First, the dominant loss class is identified and traditional methodologies are used with ARs for anomaly classification and prioritization. Once selected priority anomalies, a detailed analysis is conducted to investigate their influence on the OEE loss factors using ARs and Network Analysis (NA). Then, a Deming Cycle is used as a roadmap for applying the proposed methodology, testing and implementing proactive actions by monitoring the OEE variation.
Findings
The method proposed in this work has also been tested in an automotive company for framework validation and impact measuring. In particular, results highlighted that the rule-based ML methodology for OEE improvement addressed seven anomalies within a year through appropriate proactive actions: on average, each action has ensured an OEE gain of 5.4%.
Originality/value
The originality is related to the dual application of association rules in two different ways for extracting knowledge from the overall OEE. In particular, the co-occurrences of priority anomalies and their impact on asset Availability, Performance and Quality are investigated.
Details
Keywords
Marcus Bengtsson, Lars-Gunnar Andersson and Pontus Ekström
The purpose of the study is to test if it, by the use of a survey methodology, is possible to measure managers' awareness on, and specifically if there exist preconceived beliefs…
Abstract
Purpose
The purpose of the study is to test if it, by the use of a survey methodology, is possible to measure managers' awareness on, and specifically if there exist preconceived beliefs on, overall equipment effectiveness (OEE) results. The paper presents the design of the survey methodology as well as a test of the survey in one case company.
Design/methodology/approach
Actual OEE logs from a case company are collected and a survey on the data is designed and managers at the same case company are asked to answer the survey. The survey results are followed-up by an interview study in order to get deeper insights to both the results of the survey as well as the OEE strategy at the case company.
Findings
The findings show that the managers at this particular case company, on a general level, does not suffer too much from preconceived beliefs. However, it is clear that the managers have a preconceived belief that lack of material is logged as a loss much more often than what it actually is.
Research limitations/implications
The test has only been performed with data from one case company within the automotive manufacturing industry and only the managers at that case company has been active in the test.
Practical implications
The survey methodology can be replicated and used by other companies to find out how aware their employees are on their OEE results and if possible preconceived beliefs exists.
Originality/value
To the authors' knowledge, this is the first attempt at measuring if preconceived beliefs on OEE results exist.