Search results
1 – 3 of 3Piergiorgio Alotto, Paolo Di Barba, Alessandro Formisano, Gabriele Maria Lozito, Raffaele Martone, Maria Evelina Mognaschi, Maurizio Repetto, Alessandro Salvini and Antonio Savini
Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical…
Abstract
Purpose
Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical formulation, ill-conditioned and require suitable regularization to provide meaningful results. To test new regularization methods, there is the need of benchmark problems, which numerical properties and solutions should be well known. Hence, this study aims to define a benchmark problem, suitable to test new regularization approaches and solves with different methods.
Design/methodology/approach
To assess reliability and performance of different solving strategies for inverse source problems, a benchmark problem of current synthesis is defined and solved by means of several regularization methods in a comparative way; subsequently, an approach in terms of an artificial neural network (ANN) is considered as a viable alternative to classical regularization schemes. The solution of the underlying forward problem is based on a finite element analysis.
Findings
The paper provides a very detailed analysis of the proposed inverse problem in terms of numerical properties of the lead field matrix. The solutions found by different regularization approaches and an ANN method are provided, showing the performance of the applied methods and the numerical issues of the benchmark problem.
Originality/value
The value of the paper is to provide the numerical characteristics and issues of the proposed benchmark problem in a comprehensive way, by means of a wide variety of regularization methods and an ANN approach.
Details
Keywords
Samuel Kvasnicka, Thomas Bauernfeind, Paul Baumgartner and Riccardo Torchio
The purpose of this paper is to show that the computation of time-periodic signals for coupled antenna-circuit problems can be substantially accelerated by means of the single…
Abstract
Purpose
The purpose of this paper is to show that the computation of time-periodic signals for coupled antenna-circuit problems can be substantially accelerated by means of the single shooting method. This allows an efficient analysis of nonlinearly loaded coupled loop antennas for near field communication (NFC) applications.
Design/methodology/approach
For the modelling of electrically small coupled field-circuit problems, the partial element equivalent circuit (PEEC) method shows to be very efficient. For analysing the circuit-like description of the coupled problem, this paper developed a generalised modified nodal analysis (MNA) and applied it to specific NFC problems.
Findings
It is shown that the periodic steady state (PSS) solution of the resulting differential-algebraic system can be computed very time efficiently by the single shooting method. A speedup of roughly 114 to conventional transient approaches can be achieved.
Practical implications
The proposed approach appears to be an efficient alternative for the computation of time PSS solutions for nonlinear circuit problems coupled with discretised conductive structures, where the homogeneous solution is not of interest.
Originality/value
The present paper explores the implementation and application of the shooting method for nonlinearly loaded coupled antenna-circuit problems based on the PEEC method and shows the efficiency of this approach.
Details
Keywords
- Circuit analysis
- Transient analysis
- Time-domain modelling
- Equivalent circuit model
- Computational electromagnetics
- Field circuit models
- Near field communication
- Nonlinear resistive loads
- Full-wave rectifier
- Partial element equivalent circuit method
- Modified nodal analysis
- Differential-algebraic equation
- Backward differentiation formula
- Single shooting method