The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by…
Abstract
Purpose
The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty.
Design/methodology/approach
A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied.
Findings
Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM.
Originality/value
The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.
Details
Keywords
Valentin Hanser, Markus Schöbinger and Karl Hollaus
This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis.
Abstract
Purpose
This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis.
Design/methodology/approach
The mixed multiscale finite element method based on the based on the T,Φ-Φ formulation, with the current vector potential T and the magnetic scalar potential Φ allows the laminated core to be modelled as a single homogeneous block. This means that the individual sheets do not have to be resolved, which saves a lot of computing time and reduces the demands on the computer system enormously.
Findings
As a representative numerical example, a single-phase transformer with 4, 20 and 184 sheets is simulated with great success. The eddy current losses of the simulation using the standard finite element method and the simulation using the mixed multiscale finite element method agree very well and the required simulation time is tremendously reduced.
Originality/value
The vector Preisach model is used to account for vector hysteresis and is integrated into the mixed multiscale finite element method for the first time.
Details
Keywords
Stjepan Frljić, Bojan Trkulja and Ana Drandić
The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power…
Abstract
Purpose
The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power transformer, has an open-type core (I-type core). In those apparatus, reduction of core losses is achieved by using a multipart open-type core that is created by merging a larger number of leaner cores.
Design/methodology/approach
3D FEM approach for calculation of eddy current losses in open-type cores based on a weak AλA formulation is presented. Method in which redundant degrees of freedom are eliminated is shown. This enables faster convergence of the simulation. The results are benchmarked using simulations with standard AVA formulation.
Findings
Results using weak AλA formulation with elimination of redundant degrees of freedom are in agreement with both simulation using only weak AλA formulation and with simulation based on AVA formulation.
Research limitations/implications
The presented methodology is valid in linear cases, whereas the nonlinear case will be part of future work.
Practical implications
Presented procedure can be used for the optimization when designing the open-type core of apparatus like power voltage transformers.
Originality/value
The presented method is specifically adapted for calculating eddy currents in the open-type core. The method is based on a weak formulation for the magnetic vector potential A and the current vector potential λ, incorporating numerical homogenization and a straightforward elimination of redundant degrees of freedom, resulting in faster convergence of the simulation.
Details
Keywords
Kaoutar Hazim, Guillaume Parent, Stéphane Duchesne, Andrè Nicolet and Christophe Geuzaine
This paper aims to model a three-dimensional twisted geometry of a twisted pair studied in an electrostatic approximation using only two-dimensional (2D) finite elements.
Abstract
Purpose
This paper aims to model a three-dimensional twisted geometry of a twisted pair studied in an electrostatic approximation using only two-dimensional (2D) finite elements.
Design/methodology/approach
The proposed method is based on the reformulation of the weak formulation of the electrostatics problem to deal with twisted geometries only in 2D.
Findings
The method is based on a change of coordinates and enables a faster computational time as well as a high accuracy.
Originality/value
The effectiveness of the adopted approach is demonstrated by studying different configurations related to the IEC 60851-5 standard defined for the measurement of the electrical properties of the insulation of the winding wires used in electrical machines.
Details
Keywords
Jonas Bundschuh, M. Greta Ruppert and Yvonne Späck-Leigsnering
The purpose of this paper is to present the freely available finite element simulation software Pyrit.
Abstract
Purpose
The purpose of this paper is to present the freely available finite element simulation software Pyrit.
Design/methodology/approach
In a first step, the design principles and the objective of the software project are defined. Then, the software’s structure is established: The software is organized in packages for which an overview is given. The structure is based on the typical steps of a simulation workflow, i.e., problem definition, problem-solving and post-processing. State-of-the-art software engineering principles are applied to ensure a high code quality at all times. Finally, the modeling and simulation workflow of Pyrit is demonstrated by three examples.
Findings
Pyrit is a field simulation software based on the finite element method written in Python to solve coupled systems of partial differential equations. It is designed as a modular software that is easily modifiable and extendable. The framework can, therefore, be adapted to various activities, i.e., research, education and industry collaboration.
Research limitations/implications
The focus of Pyrit are static and quasistatic electromagnetic problems as well as (coupled) heat conduction problems. It allows for both time domain and frequency domain simulations.
Originality/value
In research, problem-specific modifications and direct access to the source code of simulation tools are essential. With Pyrit, the authors present a computationally efficient and platform-independent simulation software for various electromagnetic and thermal field problems.