Search results

1 – 1 of 1
Open Access
Article
Publication date: 5 June 2024

Gokce Tomrukcu, Hazal Kizildag, Gizem Avgan, Ozlem Dal, Nese Ganic Saglam, Ece Ozdemir and Touraj Ashrafian

This study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model…

Abstract

Purpose

This study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model calibration through strategic short-term data acquisition, the systematic framework targets critical adjustments using a strategically captured dataset. Leveraging metrics like Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)), this methodology aims to heighten energy efficiency assessment accuracy without lengthy data collection periods.

Design/methodology/approach

A standalone school and a campus facility were selected as case studies. Field investigations enabled precise energy modeling, emphasizing user-dependent parameters and compliance with standards. Simulation outputs were compared to short-term actual measurements, utilizing MBE and CV(RMSE) metrics, focusing on internal temperature and CO2 levels. Energy bills and consumption data were scrutinized to verify natural gas and electricity usage against uncertain parameters.

Findings

Discrepancies between initial simulations and measurements were observed. Following adjustments, the standalone school 1’s average internal temperature increased from 19.5 °C to 21.3 °C, with MBE and CV(RMSE) aiding validation. Campus facilities exhibited complex variations, addressed by accounting for CO2 levels and occupancy patterns, with similar metrics aiding validation. Revisions in lighting and electrical equipment schedules improved electricity consumption predictions. Verification of natural gas usage and monthly error rate calculations refined the simulation model.

Originality/value

This paper tackles Building Energy Simulation validation challenges due to data scarcity and time constraints. It proposes a strategic, short-term data collection method. It uses MBE and CV(RMSE) metrics for a comprehensive evaluation to ensure reliable energy efficiency predictions without extensive data collection.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Only content I have access to

Year

Content type

1 – 1 of 1