Mohammed Arif, Jack Goulding, Jeff Rankin and Farzad Pour Rahimian
Habeeba Khan, Sayyed Arif Ali, Mohd Wajid and Muhammad Shah Alam
In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a…
Abstract
Purpose
In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a flexible Kapton polyimide substrate for a far-field charging unit (FFCU).
Design/methodology/approach
The proposed antenna is designed using the transmission line model on a flexible Kapton polyimide substrate. The finite element method (FEM) is used to perform the full-wave electromagnetic analysis of the proposed design.
Findings
The antenna offers −10 dB bandwidth of 240 MHz with beam width and broadside gain found to be 29.4° and 16.38 dB, respectively. Also, a very low cross-polarization level of −34.23 dB is achieved with a radiation efficiency of 36.67%. The array is capable of scanning −15° to +15° in both the elevation and azimuth planes.
Originality/value
The radiation characteristics achieved suggest that the flexible substrate antenna is suitable for wireless charging purposes.