Joe F. Hair, Marko Sarstedt, Christian M. Ringle, Pratyush N. Sharma and Benjamin Dybro Liengaard
This paper aims to discuss recent criticism related to partial least squares structural equation modeling (PLS-SEM).
Abstract
Purpose
This paper aims to discuss recent criticism related to partial least squares structural equation modeling (PLS-SEM).
Design/methodology/approach
Using a combination of literature reviews, empirical examples, and simulation evidence, this research demonstrates that critical accounts of PLS-SEM paint an overly negative picture of PLS-SEM’s capabilities.
Findings
Criticisms of PLS-SEM often generalize from boundary conditions with little practical relevance to the method’s general performance, and disregard the metrics and analyses (e.g., Type I error assessment) that are important when assessing the method’s efficacy.
Research limitations/implications
We believe the alleged “fallacies” and “untold facts” have already been addressed in prior research and that the discussion should shift toward constructive avenues by exploring future research areas that are relevant to PLS-SEM applications.
Practical implications
All statistical methods, including PLS-SEM, have strengths and weaknesses. Researchers need to consider established guidelines and recent advancements when using the method, especially given the fast pace of developments in the field.
Originality/value
This research addresses criticisms of PLS-SEM and offers researchers, reviewers, and journal editors a more constructive view of its capabilities.
Details
Keywords
Joseph F. Hair, Pratyush N. Sharma, Marko Sarstedt, Christian M. Ringle and Benjamin D. Liengaard
The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis…
Abstract
Purpose
The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis differentiated indicator weights produced by partial least squares structural equation modeling (PLS-SEM).
Design/methodology/approach
The authors rely on prior literature as well as empirical illustrations and a simulation study to assess the efficacy of equal weights estimation and the CEI.
Findings
The results show that the CEI lacks discriminatory power, and its use can lead to major differences in structural model estimates, conceals measurement model issues and almost always leads to inferior out-of-sample predictive accuracy compared to differentiated weights produced by PLS-SEM.
Research limitations/implications
In light of its manifold conceptual and empirical limitations, the authors advise against the use of the CEI. Its adoption and the routine use of equal weights estimation could adversely affect the validity of measurement and structural model results and understate structural model predictive accuracy. Although this study shows that the CEI is an unsuitable metric to decide between equal weights and differentiated weights, it does not propose another means for such a comparison.
Practical implications
The results suggest that researchers and practitioners should prefer differentiated indicator weights such as those produced by PLS-SEM over equal weights.
Originality/value
To the best of the authors’ knowledge, this study is the first to provide a comprehensive assessment of the CEI’s usefulness. The results provide guidance for researchers considering using equal indicator weights instead of PLS-SEM-based weighted indicators.
Details
Keywords
Joe F. Hair, Jun-Hwa Cheah, Christian M. Ringle, Marko Sarstedt and Hiram Ting
Victoria Crittenden, Marko Sarstedt, Claudia Astrachan, Joe Hair and Carlos Eduardo Lourenco