Search results
1 – 4 of 4Advances in Big Data, artificial Intelligence and data-driven innovation bring enormous benefits for the overall society and for different sectors. By contrast, their misuse can…
Abstract
Advances in Big Data, artificial Intelligence and data-driven innovation bring enormous benefits for the overall society and for different sectors. By contrast, their misuse can lead to data workflows bypassing the intent of privacy and data protection law, as well as of ethical mandates. It may be referred to as the ‘creep factor’ of Big Data, and needs to be tackled right away, especially considering that we are moving towards the ‘datafication’ of society, where devices to capture, collect, store and process data are becoming ever-cheaper and faster, whilst the computational power is continuously increasing. If using Big Data in truly anonymisable ways, within an ethically sound and societally focussed framework, is capable of acting as an enabler of sustainable development, using Big Data outside such a framework poses a number of threats, potential hurdles and multiple ethical challenges. Some examples are the impact on privacy caused by new surveillance tools and data gathering techniques, including also group privacy, high-tech profiling, automated decision making and discriminatory practices. In our society, everything can be given a score and critical life changing opportunities are increasingly determined by such scoring systems, often obtained through secret predictive algorithms applied to data to determine who has value. It is therefore essential to guarantee the fairness and accurateness of such scoring systems and that the decisions relying upon them are realised in a legal and ethical manner, avoiding the risk of stigmatisation capable of affecting individuals’ opportunities. Likewise, it is necessary to prevent the so-called ‘social cooling’. This represents the long-term negative side effects of the data-driven innovation, in particular of such scoring systems and of the reputation economy. It is reflected in terms, for instance, of self-censorship, risk-aversion and lack of exercise of free speech generated by increasingly intrusive Big Data practices lacking an ethical foundation. Another key ethics dimension pertains to human-data interaction in Internet of Things (IoT) environments, which is increasing the volume of data collected, the speed of the process and the variety of data sources. It is urgent to further investigate aspects like the ‘ownership’ of data and other hurdles, especially considering that the regulatory landscape is developing at a much slower pace than IoT and the evolution of Big Data technologies. These are only some examples of the issues and consequences that Big Data raise, which require adequate measures in response to the ‘data trust deficit’, moving not towards the prohibition of the collection of data but rather towards the identification and prohibition of their misuse and unfair behaviours and treatments, once government and companies have such data. At the same time, the debate should further investigate ‘data altruism’, deepening how the increasing amounts of data in our society can be concretely used for public good and the best implementation modalities.
Details
Keywords
Simone Fanelli, Lorenzo Pratici, Fiorella Pia Salvatore, Chiara Carolina Donelli and Antonello Zangrandi
This study aims to provide a picture of the current state of art in the use of big data for decision-making processes for the management of health-care organizations.
Abstract
Purpose
This study aims to provide a picture of the current state of art in the use of big data for decision-making processes for the management of health-care organizations.
Design/methodology/approach
A systematic literature review was carried out. The research uses two analyses: descriptive analysis, describing the evolution of citations; keywords; and the ten most influential papers, and bibliometric analysis, for content evaluation, for which a cluster analysis was performed.
Findings
A total of 48 articles were selected for bibliographic coupling out of an initial sample of more than 5,000 papers. Of the 48 articles, 29 are linked on the basis of their bibliography. Clustering the 29 articles on the basis of actual content, four research areas emerged: quality of care, quality of service, crisis management and data management.
Originality/value
Health-care organizations believe strongly that big data can become the most effective tool for correctly influencing the decision-making processes. Thus, more and more organizations continue to invest in big data analytics, and the literature on this topic has expanded rapidly. This study seeks to provide a comprehensive picture of the different streams of literature existing, together with gaps in research and future perspectives. The literature is mature enough for an analysis to be made and provide managers with useful insights on opportunities, criticisms and perspectives on the use of big data for health-care organizations. However, to date, there is no comprehensive literature review on the big data analysis in health care. Furthermore, as big data is a “sexy catchphrase,” more clarity on its usage may be needed. It represents an important tool to be investigated and its great potential is often yet to be discovered. This study thus sheds light on emerging issues and suggests further research that may be needed.
Details
Keywords
The purpose of this study is to explore the potential and growth of big data across several industries between 2016 and 2020. This study aims to analyze the behavior of interest…
Abstract
Purpose
The purpose of this study is to explore the potential and growth of big data across several industries between 2016 and 2020. This study aims to analyze the behavior of interest in big data within the community and to identify areas with the greatest potential for future big data adoption.
Design/methodology/approach
This research uses Google Trends to characterize the community’s interest in big data. Community interest is measured on a scale of 0–100 from weekly observations over the past five years. A total of 16 industries were considered to explore the relative interest in big data for each industry.
Findings
The findings revealed that big data has been of high interest to the community over the past five years, particularly in the manufacturing, computers and electronics industries. However, over the 2020s the interest in the theme decreased by more than 15%, especially in the areas where big data typically had the greatest potential interest. In contrast, areas with less potential interest in big data such as real estate, sport and travel have registered an average growth of less than 10%.
Originality/value
To the best of the author’s knowledge, this study is original in complementing the traditional survey approaches launched among the business communities to discover the potential of big data in specific industries. The knowledge of big data growth potential is relevant for players in the field to identify saturation and emerging opportunities for big data adoption.
Details
Keywords
Bartosz Marcinkowski and Bartlomiej Gawin
One of the leading factors that shape product and service delivery are data collected in databases and other repositories maintained by companies. The transformation of such data…
Abstract
Purpose
One of the leading factors that shape product and service delivery are data collected in databases and other repositories maintained by companies. The transformation of such data into knowledge and wisdom may constitute a new source of income. This paper aims to explore how small/medium-sized enterprises (SMEs) advance their business models (BMs) around data to handle data-driven products and how this contributes to their innovativeness and performance.
Design/methodology/approach
To investigate the phenomenon, the as-is BM of a multinational SME was mapped and its limitations were revealed through a qualitative study. The BM canvas was used. Then the data-driven approach was innovated within the facility management (FM) industry, where a high volume of operational and sensor-based data being collected creates added value in terms of new data-based products.
Findings
A data-driven business model (DDBM) blueprint for the FM industry that supports the need to complement service-driven operations with the data-driven approach is delivered. Enhanced BM equips a facility manager with additional managerial tools that enable decreasing property utilization costs and opens up new opportunities for generating revenue. This paper drafts the way to evolve from service to data-driven business and point out the attitudes that managers should adopt to promote and implement DDBM.
Practical implications
The DDBM constitutes a guideline that supports FM organizations in focusing their activities and resources on generating business value from data and monetizing data-driven products.
Originality/value
The research expands knowledge regarding BMs and their evolution. The gap regarding the DDBM innovation within the FM industry is filled.
Details