Search results

1 – 3 of 3
Content available
1168

Abstract

Details

International Journal of Organizational Analysis, vol. 16 no. 1/2
Type: Research Article
ISSN: 1934-8835

Content available
Article
Publication date: 9 October 2009

Jochen Wirtz, Robert Johnston and Christopher Khoe Sin Seow

561

Abstract

Details

Journal of Service Management, vol. 20 no. 5
Type: Research Article
ISSN: 1757-5818

Open Access
Article
Publication date: 28 July 2020

Noura AlNuaimi, Mohammad Mehedy Masud, Mohamed Adel Serhani and Nazar Zaki

Organizations in many domains generate a considerable amount of heterogeneous data every day. Such data can be processed to enhance these organizations’ decisions in real time…

4180

Abstract

Organizations in many domains generate a considerable amount of heterogeneous data every day. Such data can be processed to enhance these organizations’ decisions in real time. However, storing and processing large and varied datasets (known as big data) is challenging to do in real time. In machine learning, streaming feature selection has always been considered a superior technique for selecting the relevant subset features from highly dimensional data and thus reducing learning complexity. In the relevant literature, streaming feature selection refers to the features that arrive consecutively over time; despite a lack of exact figure on the number of features, numbers of instances are well-established. Many scholars in the field have proposed streaming-feature-selection algorithms in attempts to find the proper solution to this problem. This paper presents an exhaustive and methodological introduction of these techniques. This study provides a review of the traditional feature-selection algorithms and then scrutinizes the current algorithms that use streaming feature selection to determine their strengths and weaknesses. The survey also sheds light on the ongoing challenges in big-data research.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Only content I have access to

Year

Content type

1 – 3 of 3