This paper explores whether fintech paves the way for the transition to carbon neutrality in the context of China’s climate policy uncertainty (CCPU) and the influence of the…
Abstract
Purpose
This paper explores whether fintech paves the way for the transition to carbon neutrality in the context of China’s climate policy uncertainty (CCPU) and the influence of the ocean carbon sink market.
Design/methodology/approach
We apply a novel wavelet analysis technique to investigate the time-frequency dependence between the CCPU index, the CSI (China Securities Index) Fintech Theme Index (CFTI) and the Carbon Neutral Concept Index (CNCI).
Findings
The empirical results show that CCPU and CFTI have a detrimental effect on CNCI in high-frequency bands. Furthermore, in low-frequency domains, the development of CFTI can effectively promote the realization of carbon neutrality.
Practical implications
Our findings show that information from the CCPU and CFTI can be utilized to forecast the movement of CNCI. Therefore, the government should strike a balance between fintech development and environmental regulation and, hence, promote the use of renewable energy to reduce carbon emissions, facilitating the orderly and regular development of the ocean carbon sink market.
Originality/value
The development of high-quality fintech and positive climate policy reforms are crucial for achieving carbon neutrality targets and promoting the growth of the marine carbon sink market.
Details
Keywords
Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi
In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…
Abstract
Purpose
In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.
Design/methodology/approach
Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.
Findings
The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.
Originality/value
This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.