Search results
1 – 10 of 18Li Ji, Yiwei Zhang, Ruifeng Shi, Limin Jia and Xin Zhang
Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation…
Abstract
Purpose
Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways.
Design/methodology/approach
To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility.
Findings
The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions.
Originality/value
This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.
Details
Keywords
Jennifer Nabaweesi, Twaha Kaawaase Kigongo, Faisal Buyinza, Muyiwa S. Adaramola, Sheila Namagembe and Isaac Nabeta Nkote
The study aims to explore the validity of the modern renewable energy-environmental Kuznets curve (REKC) while considering the relevance of financial development in the…
Abstract
Purpose
The study aims to explore the validity of the modern renewable energy-environmental Kuznets curve (REKC) while considering the relevance of financial development in the consumption of modern renewable energy in East Africa Community (EAC). Modern renewable energy in this study includes all other forms of renewable energy except traditional use of biomass. The authors controlled for the effects of urbanization, governance, foreign direct investment (FDI) and trade openness.
Design/methodology/approach
Panel data of the five EAC countries of Burundi, Kenya, Rwanda, Tanzania and Uganda for the period 1996–2019 were used. The analysis relied on the use of the autoregressive distributed lag–pooled mean group (ARDL-PMG) model, and the data were sourced from the World Development Indicators (WDI), World Governance Indicators (WGI) and International Energy Agency (IEA).
Findings
The REKC hypothesis is supported for modern renewable energy consumption in the EAC region. Financial development positively and significantly affects modern renewable energy consumption, whereas urbanization, FDI and trade openness reduce modern renewable energy consumption. Governance is insignificant.
Originality/value
The concept of the REKC, although explored in other contexts such as aggregate renewable energy and in other regions, has not been used to explain the consumption of modern renewable energy in the EAC.
Details