The environmental deterioration has become one of the most economically consequential and charged topics. Numerous scholars have examined the driving factors failing to consider…
Abstract
Purpose
The environmental deterioration has become one of the most economically consequential and charged topics. Numerous scholars have examined the driving factors failing to consider the structural breaks. This study aims to explore sustainability using the per capita ecological footprints (EF) as an indicator of environmental adversities and controlling the resources rent [(natural resources (NR)], labor capital (LC), urbanization (UR) and per capita economic growth [gross domestic product (GDP)] of China.
Design/methodology/approach
Through the analysis of the long- and short-run effects with an autoregressive distributed lag model (ARDL), structural break based on BP test and Granger causality test based on vector error correction model (VECM), empirical evidence is provided for the policies formulation of sustainable development.
Findings
The long-run equilibrium between the EF and GDP, NR, UR and LC is proved. In the long run, an environmental Kuznets curve (EKC) relationship existed, but China is still in the rising stage of the curve; there is a positive relationship between the EF and NR, indicating a resource curse; the UR is also unsustainable. The LC is the most favorable factor for sustainable development. In the short term, only the lagged GDP has an inhibitory effect on the EF. Besides, all explanatory variables are Granger causes of the EF.
Originality/value
A novel attempt is made to examine the long-term equilibrium and short-term dynamics under the prerequisites that the structural break points with its time and frequencies were examined by BP test and ARDL and VECM framework and the validity of the EKC hypothesis is tested.
Details
Keywords
Jue Li, Minghui Yu and Hongwei Wang
On shield tunnel construction (STC) site, human error is widely recognized as essential to accident. It is necessary to explain which factors lead to human error and how these…
Abstract
Purpose
On shield tunnel construction (STC) site, human error is widely recognized as essential to accident. It is necessary to explain which factors lead to human error and how these factors can influence human performance. Human reliability analysis supports such necessity through modeling the performance shaping factors (PSFs). The purpose of this paper is to establish and validate a PSF taxonomy for the STC context.
Design/methodology/approach
The approach taken in this study mainly consists of three steps. First, a description of the STC context is proposed through the analysis of the STC context. Second, the literature which stretch across the PSF methodologies, cognitive psychology and human factors of STC and other construction industries are reviewed to develop an initial set of PSFs. Finally, a final PSF set is modified and validated based on STC task analysis and STC accidents cases.
Findings
The PSF taxonomy constituted by 4 main components, 4 hierarchies and 85 PSFs is established for human behavior modeling and simulation under the STC context. Furthermore, by comparing and evaluating the performance of STC PSF and existing PSF studies, the proposed PSF taxonomy meets the requirement for qualitative and quantitative analysis.
Practical implications
The PSF taxonomy can provide a basis and support for human behavior modeling and simulation under the STC context. Integrating PSFs into a behavior simulation model provides a more realistic and integrated assessment of human error by manifesting the influence of each PSFs on the cognitive processes. The simulation results can suggest concrete points for the improvement of STC safety management.
Originality/value
This paper develops a taxonomy of PSFs that addresses the various unique influences of the STC context on human behaviors. The harsh underground working conditions and diverse resources of system information are identified as key characteristics of the STC context. Furthermore, the PSF taxonomy can be integrated into a human cognitive behavior model to predict the worker’s behavior on STC site in future work.